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Chapter 4:  Fluids Kinematics 
 

4.1 Velocity and Description Methods 
 

Primary dependent variable is fluid velocity vector   
V = V ( r ); where r is the position vector 

 
If V is known then pressure 

and forces can be 

determined using 
techniques to be discussed 

in subsequent chapters. 
 

Consideration of the velocity field alone is referred to as 

flow field kinematics in distinction from flow field 
dynamics (force considerations). 

 
Fluid mechanics and especially flow kinematics is a 

geometric subject and if one has a good understanding of 

the flow geometry then one knows a great deal about the 
solution to a fluid mechanics problem. 

 
Consider a simple flow situation, such as an airfoil in a 

wind tunnel: 

 
 

 
 

 

 

 

 

x 

r 

U = constant 
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Velocity: Lagrangian and Eulerian Viewpoints 
 

There are two approaches to analyzing the velocity field: 

Lagrangian and Eulerian 

 

Lagrangian:  keep track of individual fluids particles (i.e., solve F 

= Ma for each particle) 

Say particle p is at position r1(t1) 

and at position r2(t2) then, 
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Of course the motion of one particle is insufficient to describe the flow 

field, so the motion of all particles must be considered simultaneously 

which would be a very difficult task.  Also, spatial gradients are not 

given directly.  Thus, the Lagrangian approach is only used in special 

circumstances. 

 

Eulerian:  focus attention on a fixed point in space 

      ̂    ̂    ̂ 

 

 
In general,  

   (   )    ̂    ̂    ̂⏟        
                   

 

where, 

    (       ),    (       ),    (       ) 
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This approach is by far the most useful since we are usually 
interested in the flow field in some region and not the 

history of individual particles. 
 

However, must transform F = Ma 

from system to CV (recall 
Reynolds Transport Theorem 

(RTT) & CV analysis from 
thermodynamics) 

 

V can be expressed in any coordinate system; e.g., polar or 
spherical coordinates.  Recall that such coordinates are 

called orthogonal curvilinear coordinates.  The coordinate 
system is selected such that it is convenient for describing 

the problem at hand (boundary geometry or streamlines).   

 
Undoubtedly, the most convenient coordinate system is 

streamline coordinates: 

)t,s(ê)t,s(v)t,s(V ss  

 
However, usually V not known a priori and even if known 

streamlines maybe difficult to generate/determine. 
 

 

Ex. Flow around a car 
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4.2 Acceleration Field and Material Derivative 
 
The acceleration of a fluid particle is the rate of change of 

its velocity.   
 

In the Lagrangian approach the velocity of a fluid particle 

is a function of time only since we have described its 
motion in terms of its position vector. 
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In the Eulerian approach the velocity is a function of both 

space and time such that, 
  

    (       ) ̂   (       ) ̂   (       ) ̂  

 

where (     ) are velocity components in (     ) 
directions, and (     )   ( ) since we must follow the 

particle in evaluating     ⁄ .
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) are not arbitrary but assumed to follow a 

fluid particle, i.e. 
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Similarly for    &   , 
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In vector notation this can be written concisely 

 

VV
t

V

Dt

VD





  

 

k̂
z

ĵ
y

î
x 












   gradient operator 

 

First term, 
t

V




, called local or temporal acceleration results 

from velocity changes with respect to time at a given point.  

Local acceleration results when the flow is unsteady. 

 

Second term, VV  , called convective acceleration 

because it is associated with spatial gradients of velocity in 

the flow field.  Convective acceleration results when the 
flow is non-uniform, that is, if the velocity changes along a 

streamline. 

 
The convective acceleration terms are nonlinear which 

causes mathematical difficulties in flow analysis; also, even 
in steady flow the convective acceleration can be large if 

spatial gradients of velocity are large. 
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Example:  Flow through a converging nozzle can be 

approximated by a one dimensional velocity distribution  
u = u(x).  For the nozzle shown, assume that the velocity 

varies linearly from u = Vo at the entrance to u = 3Vo at the 
exit.  Compute the acceleration 

Dt

VD
  as a function of x.  

Evaluate 
Dt

VD
 at the entrance 

and exit if Vo = 10 ft/s and  

L =1 ft. 
 

 
 

We have î)x(uV  ,  
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@ x = 0  ax = 200 ft/s

2
 

 

@ x = L  ax = 600 ft/s
2
 

 

 

u = Vo 

y 

Assume linear 

variation 

between inlet 
and exit 

u(x) = mx + b 

u(0) = b = Vo 

m =  
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Additional considerations: Separation, Vortices, 

Turbulence, and Flow Classification 
 

We will take this opportunity and expand on the material 

provided in the text to give a general discussion of fluid 
flow classifications and terminology. 

 
1. One-, Two-, and Three-dimensional Flow 

1D:  V = î)y(u  

 

2D:  V = ĵ)y,x(vî)y,x(u   

 

3D:  V = V(x) = k̂)z,y,x(wĵ)z,y,x(vî)z,y,x(u   

 

 
2. Steady vs. Unsteady Flow 

V = V(x,t)  unsteady flow 

 
V = V(x)  steady flow 

 
 

3. Incompressible and Compressible Flow 

0
Dt

D



   incompressible flow 

 
    representative velocity 

Ma = 
c

V
 

    speed of sound in fluid 
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Ma < .3  incompressible 
 

Ma > .3  compressible 
 

Ma = 1  sonic (commercial aircraft Ma.8) 
 

Ma > 1  supersonic 

 
Ma is the most important nondimensional parameter for 

compressible flow     (Chapter 7 Dimensional Analysis) 
 

 

4. Viscous and Inviscid Flows 

Inviscid flow: neglect , which simplifies analysis but  

( = 0)  must decide when this is a good  
approximation (D’ Alembert paradox 

body in steady motion CD = 0!) 

     Viscous flow: retain , i.e., “Real-Flow Theory” more  

(  0)  complex analysis, but often no choice 
 

 
5. Rotational vs. Irrotational Flow 

 =   V    0  rotational flow 
 

 = 0   irrotational flow 
 

Generation of vorticity usually is the result of viscosity  
viscous flows are always rotational, whereas inviscid flows 
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are usually irrotational.  Inviscid, irrotational, 

incompressible flow is referred to as ideal-flow theory. 
 

 
6. Laminar vs. Turbulent Viscous Flows 

Laminar flow = smooth orderly motion composed of 

thin sheets (i.e., laminas) gliding smoothly over each 
other 

 
Turbulent flow = disorderly high frequency fluctuations 

superimposed on main motion.  Fluctuations are visible 

as eddies which continuously mix, i.e., combine and 
disintegrate (average size is referred to as the scale of 

turbulence). 
      Reynolds decomposition 

  )t(uuu   

 

 mean   turbulent fluctuation 
 motion 

 

usually u (.01-.1)u , but influence is as if  increased 

by 100-10,000 or more. 
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Example:  Pipe Flow (Chapter 8 = Flow in Conduits) 

Laminar flow: 
 
















dx

dp

4

rR
)r(u

22

 

u(y),velocity profile in a paraboloid 
 

 

 
Turbulent flow:  fuller profile due to turbulent mixing 

extremely complex fluid motion that defies closed form 
analysis. 

 

 

 

Turbulent flow is the most important area of motion fluid 
dynamics research. 

 
 

The most important nondimensional number for describing 

fluid motion is the Reynolds number (Chapter 8) 
 

Re = 





 VDVD V = characteristic velocity 

D = characteristic length 
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For pipe flow 

 V = V  = average velocity 
 D = pipe diameter 
  

 Re < 2300 laminar flow 

 Re > 2300 turbulent flow 
 

Also depends on roughness, free-stream turbulence, etc. 
 

 

7. Internal vs. External Flows 
Internal flows = completely wall bounded;  

Usually requires viscous analysis, except near entrance 
(Chapter 8) 

 

External flows = unbounded;  i.e., at some distance from 
body or wall flow is uniform  (Chapter 9, Surface 

Resistance)  
 

External Flow exhibits flow-field regions such that both 

inviscid and viscous analysis can be used depending on 
the body shape and Re. 
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Flow Field Regions (high Re flows) 

 

 
Important features: 

1) low Re viscous effects important throughout entire 

fluid domain:  creeping motion 
2) high Re flow about streamlined body viscous effects 

confined to narrow region:  boundary layer and wake 
3) high Re flow about bluff bodies:  in regions of adverse 

pressure gradient flow is susceptible to separation and 

viscous-inviscid interaction is important 
 

 
8.  Separated vs. Unseparated Flow 

 

    Flow remains attached  
Streamlined body    w/o separation 

 
 

 

Bluff body    Flow separates and creates 
the region of reverse  

flow, i.e. separation 
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4.3 Basic Control-Volume Approach and RTT 
 

 
  ̇     
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Reynolds Transport Theorem (RTT) 

 

Need relationship between  
sys

B
dt

d
 and changes in 

 
CVCV

ddm
cv

B  . 

 

1 = time rate of change of B in CV =  
CV

d
dt

d

dt

cv
dB

   

 

2 = net outflux of B from CV across CS =  

∫         
  

 

 

SYS

R

C V C S

dB d
d V n dA

dt dt
       

 
General form RTT for moving deforming control volume 
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Special Cases: 

 
1)  Non-deforming CV 

 

 SYS

R

C V C S

dB
d V n dA

dt t
 


   


   

2)  Fixed CV 
 

 SYS

C V C S

dB
d V n dA

dt t
 


   


   

 

 Gauss’s Theorem:  
CV CS

b d b n dA       

 

   SYS

CV

dB
V d

dt t
 

 
    

  
  

 

Since CV fixed and arbitrary 
0

lim
d

gives differential eq. 

 

3)  Steady Flow:  0




t
 

 

4)  Uniform flow across discrete CS (steady or 
unsteady) 

 

CSCS

V n dA V n dA     (- inlet, + outlet) 
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Continuity Equation: 

 
B = M = mass of system 

β = 1 

 

0
dt

dM
 by definition, system = fixed amount of mass 

 

Integral Form: 

 

0
R

C V C S

dM d
d V n dA

dt dt
        

 

R

C V C S

d
d V n dA

dt
       

 
Rate of decrease of mass in CV = net rate of mass outflow across CS 

 

Note simplifications for non-deforming CV, fixed CV, 
steady flow, and uniform flow across discrete CS 

 

Simplifications: 

1. Steady flow:  0Vd
dt

d

CV

   

 

2. V = constant over discrete dA (flow sections): 

  
CS CS

AVdAV  
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3. Incompressible fluid ( = constant) 

C S C V

d
V dA dV

dt
      conservation of volume 

 
4. Steady One-Dimensional Flow in a Conduit: 

 
CS

0AV  

 

1V1A1 + 2V2A2 = 0 
 

for  = constant Q1 = Q2 

 


