9

57:020 Fluid Mechanics	                                                               	Chapter 4
17
Professor Fred Stern   Fall 2012
Chapter 4:  Fluids Kinematics

4.1 Velocity and Description Methods

Primary dependent variable is fluid velocity vector  
V = V ( r ); where r is the position vector
[image: Page4-1top]
If V is known then pressure and forces can be determined using techniques to be discussed in subsequent chapters.r
x






Consideration of the velocity field alone is referred to as flow field kinematics in distinction from flow field dynamics (force considerations).

Fluid mechanics and especially flow kinematics is a geometric subject and if one has a good understanding of the flow geometry then one knows a great deal about the solution to a fluid mechanics problem.

Consider a simple flow situation, such as an airfoil in a wind tunnel:U = constant

[image: Page4-1]





Velocity: Lagrangian and Eulerian Viewpoints

There are two approaches to analyzing the velocity field: Lagrangian and Eulerian

Lagrangian:  keep track of individual fluids particles (i.e., solve F = Ma for each particle)
[image: ]Say particle p is at position r1(t1) and at position r2(t2) then,


      
   	      
	
Of course the motion of one particle is insufficient to describe the flow field, so the motion of all particles must be considered simultaneously which would be a very difficult task.  Also, spatial gradients are not given directly.  Thus, the Lagrangian approach is only used in special circumstances.

Eulerian:  focus attention on a fixed point in space
  

[image: ]
In general, 

where,
	, , 

This approach is by far the most useful since we are usually interested in the flow field in some region and not the history of individual particles.
[image: Page4-3car]
However, must transform F = Ma from system to CV (recall Reynolds Transport Theorem (RTT) & CV analysis from thermodynamics)Ex. Flow around a car


[image: Page4-3]V can be expressed in any coordinate system; e.g., polar or spherical coordinates.  Recall that such coordinates are called orthogonal curvilinear coordinates.  The coordinate system is selected such that it is convenient for describing the problem at hand (boundary geometry or streamlines).  





[image: Page4-3end]Undoubtedly, the most convenient coordinate system is streamline coordinates:



However, usually V not known a priori and even if known streamlines maybe difficult to generate/determine.


4.2 Acceleration Field and Material Derivative

The acceleration of a fluid particle is the rate of change of its velocity.  

In the Lagrangian approach the velocity of a fluid particle is a function of time only since we have described its motion in terms of its position vector.
[image: Page4-6]

					     
					     
					    
					    			





In the Eulerian approach the velocity is a function of both space and time such that,
	
	 

[bookmark: OLE_LINK1][bookmark: OLE_LINK2]where  are velocity components in  directions, and  since we must follow the particle in evaluating .



 


	 


where  are not arbitrary but assumed to follow a fluid particle, i.e. 




Similarly for  & ,

	

	
	

In vector notation this can be written concisely





  gradient operator


First term, , called local or temporal acceleration results from velocity changes with respect to time at a given point.  Local acceleration results when the flow is unsteady.


Second term,, called convective acceleration because it is associated with spatial gradients of velocity in the flow field.  Convective acceleration results when the flow is non-uniform, that is, if the velocity changes along a streamline.

The convective acceleration terms are nonlinear which causes mathematical difficulties in flow analysis; also, even in steady flow the convective acceleration can be large if spatial gradients of velocity are large.


Example:  Flow through a converging nozzle can be approximated by a one dimensional velocity distribution 


[image: Page4-8]u = u(x).  For the nozzle shown, assume that the velocity varies linearly from u = Vo at the entrance to u = 3Vo at the exit.  Compute the acceleration   as a function of x.  Evaluate  at the entrance and exit if Vo = 10 ft/s and y

L =1 ft.
u = Vo

u(x) = mx + b
u(0) = b = Vo

m = 




We have	,  


		Assume linear variation between inlet and exit




		  


@ x = 0		ax = 200 ft/s2

@ x = L		ax = 600 ft/s2



Additional considerations: Separation, Vortices, Turbulence, and Flow Classification

We will take this opportunity and expand on the material provided in the text to give a general discussion of fluid flow classifications and terminology.

1. One-, Two-, and Three-dimensional Flow

1D:  V = 


2D:  V = 


3D:  V = V(x) = 


2. Steady vs. Unsteady Flow
V = V(x,t)		unsteady flow

V = V(x)		steady flow


3. Incompressible and Compressible Flow

   incompressible flow

				representative velocity

Ma = 
				speed of sound in fluid

Ma < .3		incompressible

Ma > .3		compressible

Ma = 1		sonic	(commercial aircraft Ma.8)

Ma > 1		supersonic

Ma is the most important nondimensional parameter for compressible flow     (Chapter 7 Dimensional Analysis)


4. Viscous and Inviscid Flows
Inviscid flow:	neglect , which simplifies analysis but 
( = 0)		must decide when this is a good 
approximation (D’ Alembert paradox body in steady motion CD = 0!)
     Viscous flow:	retain , i.e., “Real-Flow Theory” more 
(  0)		complex analysis, but often no choice


5. Rotational vs. Irrotational Flow
 =   V    0		rotational flow

 = 0 		irrotational flow

Generation of vorticity usually is the result of viscosity  viscous flows are always rotational, whereas inviscid flows are usually irrotational.  Inviscid, irrotational, incompressible flow is referred to as ideal-flow theory.


6. Laminar vs. Turbulent Viscous Flows
Laminar flow = smooth orderly motion composed of thin sheets (i.e., laminas) gliding smoothly over each other

Turbulent flow = disorderly high frequency fluctuations superimposed on main motion.  Fluctuations are visible as eddies which continuously mix, i.e., combine and disintegrate (average size is referred to as the scale of turbulence).
						Reynolds decomposition

		

	mean			turbulent fluctuation
	motion



usually (.01-.1), but influence is as if  increased by 100-10,000 or more.



Example:  Pipe Flow (Chapter 8 = Flow in Conduits)
Laminar flow:
[image: Page4-31top]


u(y),velocity profile in a paraboloid



Turbulent flow:  fuller profile due to turbulent mixing extremely complex fluid motion that defies closed form analysis.

[image: Page4-31]

Turbulent flow is the most important area of motion fluid dynamics research.


The most important nondimensional number for describing fluid motion is the Reynolds number (Chapter 8)
V = characteristic velocity
D = characteristic length


Re = 
For pipe flow

	V =  = average velocity
	D = pipe diameter
	
	Re < 2300	laminar flow
	Re > 2300	turbulent flow

Also depends on roughness, free-stream turbulence, etc.


7. Internal vs. External Flows
Internal flows = completely wall bounded; 
Usually requires viscous analysis, except near entrance (Chapter 8)

External flows = unbounded;  i.e., at some distance from body or wall flow is uniform  (Chapter 9, Surface Resistance)	

External Flow exhibits flow-field regions such that both inviscid and viscous analysis can be used depending on the body shape and Re.


[image: Page4-32top]Flow Field Regions (high Re flows)




Important features:
1) low Re viscous effects important throughout entire fluid domain:  creeping motion
2) high Re flow about streamlined body viscous effects confined to narrow region:  boundary layer and wake
3) high Re flow about bluff bodies:  in regions of adverse pressure gradient flow is susceptible to separation and viscous-inviscid interaction is important


8.  Separated vs. Unseparated Flow

				Flow remains attached 
[image: Page4-32]Streamlined body				w/o separation



Bluff body				Flow separates and creates
the region of reverse 
flow, i.e. separation

4.3 Basic Control-Volume Approach and RTT

[image: ]
  
[image: ]
Reynolds Transport Theorem (RTT)



Need relationship between  and changes in .
[image: ]

[bookmark: _GoBack]1 = time rate of change of B in CV = 

2 = net outflux of B from CV across CS = 





General form RTT for moving deforming control volume
Special Cases:

1)  Non-deforming CV



2)  Fixed CV





	Gauss’s Theorem:  





Since CV fixed and arbitrary gives differential eq.


3)  Steady Flow:  

4)  Uniform flow across discrete CS (steady or unsteady)


	(- inlet, + outlet)
Continuity Equation:

B = M = mass of system
β = 1


	by definition, system = fixed amount of mass

Integral Form:







Rate of decrease of mass in CV = net rate of mass outflow across CS

Note simplifications for non-deforming CV, fixed CV, steady flow, and uniform flow across discrete CS

Simplifications:
1. 
Steady flow:  

2. V = constant over discrete dA (flow sections):


3. Incompressible fluid ( = constant)

		conservation of volume

4. Steady One-Dimensional Flow in a Conduit:



1V1A1 + 2V2A2 = 0

for  = constant	Q1 = Q2
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Laws of mechanics are written for a system, i.e., a fixed
amount of matter.

St
e
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\-\-—Jw\,

1. Conservation of mass: d—M =0

dmMy)

2. Conservation of momentum: F=Ma= 3
t

3. Conservation of energy: i—’f =Q-W
AE=heat added — work done
Also

dHq
Conservation of angular momentum: ':iT =Mg

. dS_3C
Second Law of Thermodynamics: T TQ +6
&, entropy production due to system irreversibilities

6<0




image44.png
In fluid mechanics we are usually interested in a region of
space, i.e, control volume and not particular systems.
Therefore, we need to transform GDE’s from a system to a
control volume, which is accomplished through the use of
RTT (actually derived

eg inthermodynamics for
v & ™ CV forms of continuity
e and 1% and 2™ laws, but

not in general form or
referred to as RTT).

Note GDE’s are of form:

< (M,MV,E)=RHS
dt — ——

system extensive properties By, depend on mass

sys

d
i.e., involve which needs to be related to changes in

CV. Recall, definition of corresponding system intensive
properties

B=(,V,¢) independent of mass
where

B= [Bdm = [Bpdv
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