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Chapter 4:  Fluids Kinematics 
 
Velocity and Description Methods 
 
Primary dependent variable is fluid velocity vector   
V = V ( r ); where r is the position vector 
 
If V is known then pressure 
and forces can be 
determined using 
techniques to be discussed 
in subsequent chapters. 
 
Consideration of the velocity field alone is referred to as 
flow field kinematics in distinction from flow field 
dynamics (force considerations). 
 
Fluid mechanics and especially flow kinematics is a 
geometric subject and if one has a good understanding of 
the flow geometry then one knows a great deal about the 
solution to a fluid mechanics problem. 
 
Consider a simple flow situation, such as an airfoil in a 
wind tunnel: 
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Velocity: Lagrangian and Eulerian Viewpoints 
 
There are two approaches to analyzing the velocity field: 
Lagrangian and Eulerian 
 
Lagrangian:  keep track of individual fluids particles (i.e., 
solve F = Ma for each particle) 
 
Say particle p is at position r1(t1) and at position r2(t2) then, 
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Of course the motion of one particle is insufficient to 
describe the flow field, so the motion of all particles must 
be considered simultaneously which would be a very 
difficult task.  Also, spatial gradients are not given directly.  
Thus, the Lagrangian approach is only used in special 
circumstances. 
 
Eulerian:  focus attention on a fixed point in space 

 k̂zĵyîxx ++=   
 
In general,  
 
 k̂wĵvîu)t,x(VV ++==  
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     velocity components 
where, 
 u = u(x,y,z,t),   v = v(x,y,z,t),   w = w(x,y,z,t)   
 
This approach is by far the most useful since we are usually 
interested in the flow field in some region and not the 
history of individual particles. 
 
However, must transform F = Ma 
from system to CV (recall 
Reynolds Transport Theorem 
(RTT) & CV analysis from 
thermodynamics) 
 
V can be expressed in any coordinate system; e.g., polar or 
spherical coordinates.  Recall that such coordinates are 
called orthogonal curvilinear coordinates.  The coordinate 
system is selected such that it is convenient for describing 
the problem at hand (boundary geometry or streamlines).   

 
Undoubtedly, the most convenient coordinate system is 
streamline coordinates: 

)t,s(ê)t,s(v)t,s(V ss=  
 

Ex. Flow around a car 

θθ+= êvêvV rr  
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However, usually V not known a priori and even if known 
streamlines maybe difficult to generate/determine. 
 
Streamlines, Streaklines, and Pathlines 
Streamlines is a line that is everywhere tangent to the 
velocity field. If the flow is steady, nothing at a fixed point 
(including the velocity direction) changes with time, so the 
streamlines are fixed lines in space. For unsteady flows the 
streamlines may change shape with time. 

 
Streamlines are lines tangent to the velocity field. 

As illustrated in the above figure, for two-dimensional 
flows the slope of the streamline, dy/dx, must be equal to 
the tangent of the angle that the velocity vector makes with 
the x axis or  

dy v
dx u

=  
If the velocity field is known as a function of x and y (and t 
if the flow is unsteady), this equation can be integrated to 
give the equation of the streamlines. 
 
A streakline consists of all particles in a flow that have 
previously passed through a common point. Streaklines are 
more of a laboratory tool than an analytical tool. They can 
be obtained by taking instantaneous photographs of marked 
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particles that all passed through a given location in the flow 
field at some earlier time. Such a line can be produced by 
continuously injecting marked fluid (neutrally buoyant 
smoke in air, or dye in water) at a given location.  

 
(a) Flow past a full-sized streamlined vehicle in the GM 
aerodynamics laboratory wind tunnel, and 18-ft by 34-ft 
test section facility driven by a 4000-hp, 43-ft-diameter fan. 
(b) Surface flow on a model vehicle as indicated by tufts 
attached to the surface. 
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If the flow is steady, each successively injected particle 
follows precisely behind the previous one, forming a steady 
streakline that is exactly the same as the streamline through 
the injection point. For unsteady flows, particles injected at 
the same point at different times need not follow the same 
path. An instantaneous photograph of the marked fluid 
would show the streakline at that instant, but it would not 
necessarily coincide with the streamline through the point 
of injection at that particular time nor with the streamline 
through the same injection point at a different time 
 
A pathline is the line traced out by a given particle as it 
flows from one point to another. The pathline is a 
Lagrangian concept that can be produced in the laboratory 
by marking a fluid particle (dying a small fluid element) 
and taking a time exposure photograph of its motion. 

 
Motion of water induced by surface waves 
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Acceleration Field and Material Derivative 
 
The acceleration of a fluid particle is the rate of change of 
its velocity.   
 
In the Lagrangian approach the velocity of a fluid particle 
is a function of time only since we have described its 
motion in terms of its position vector. 
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In the Eulerian approach the velocity is a function of both 
space and time; consequently, 

k̂)t,z,y,x(wĵ)t,z,y,x(vî)t,z,y,x(uV ++=  
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called substantial derivative 
Dt
Du  

x,y,z are f(t) 
since we must 
follow the 
particle in 
evaluating 
dV/dt 
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Similarly for ay & az, 
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In vector notation this can be written concisely 
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First term, 
t
V
∂
∂ , called local or temporal acceleration results 

from velocity changes with respect to time at a given point.  
Local acceleration results when the flow is unsteady. 
 
Second term, VV ∇⋅ , called convective acceleration 
because it is associated with spatial gradients of velocity in 
the flow field.  Convective acceleration results when the 
flow is non-uniform, that is, if the velocity changes along a 
streamline. 
 
The convective acceleration terms are nonlinear which 
causes mathematical difficulties in flow analysis; also, even 
in steady flow the convective acceleration can be large if 
spatial gradients of velocity are large. 
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Example:  Flow through a converging nozzle can be 
approximated by a one dimensional velocity distribution  
u = u(x).  For the nozzle shown, assume that the velocity 
varies linearly from u = Vo at the entrance to u = 3Vo at the 

exit.  Compute the acceleration 

Dt
VD   as a function of x.  

Evaluate 
Dt

VD  at the entrance 

and exit if Vo = 10 ft/s and  
L =1 ft. 
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@ x = 0  ax = 200 ft/s2 
 
@ x = L  ax = 600 ft/s2 
 
 

u = Vo 

y 

Assume linear 
variation 
between inlet 
and exit 

u(x) = mx + b 
u(0) = b = Vo 
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L
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Separation, Vortices, Turbulence, and Flow 
Classification 
 
We will take this opportunity and expand on the material 
provided in the text to give a general discussion of fluid 
flow classifications and terminology. 
 
1. One-, Two-, and Three-dimensional Flow 

1D:  V = î)y(u  
 
2D:  V = ĵ)y,x(vî)y,x(u +  
 
3D:  V = V(x) = k̂)z,y,x(wĵ)z,y,x(vî)z,y,x(u ++  

 
 
2. Steady vs. Unsteady Flow 

V = V(x,t)  unsteady flow 
 
V = V(x)  steady flow 

 
 
3. Incompressible and Compressible Flow 

0
Dt
D

=
ρ  ⇒  incompressible flow 

 
    representative velocity 

Ma = 
c
V  

    speed of sound in fluid 
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Ma < .3  incompressible 
 
Ma > .3  compressible 
 
Ma = 1  sonic (commercial aircraft Ma∼.8) 
 
Ma > 1  supersonic 

 
Ma is the most important nondimensional parameter for 
compressible flow     (Chapter 7 Dimensional Analysis) 

 
 
4. Viscous and Inviscid Flows 

Inviscid flow: neglect µ, which simplifies analysis but  
(µ = 0)  must decide when this is a good  

approximation (D’ Alembert paradox 
body in steady motion CD = 0!) 

     Viscous flow: retain µ, i.e., “Real-Flow Theory” more  
(µ ≠ 0)  complex analysis, but often no choice 

 
 
5. Rotational vs. Irrotational Flow 

Ω = ∇ × V  ≠  0  rotational flow 
 
Ω = 0   irrotational flow 

 
Generation of vorticity usually is the result of viscosity ∴ 
viscous flows are always rotational, whereas inviscid flows 
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are usually irrotational.  Inviscid, irrotational, 
incompressible flow is referred to as ideal-flow theory. 
 
 
6. Laminar vs. Turbulent Viscous Flows 

Laminar flow = smooth orderly motion composed of 
thin sheets (i.e., laminas) gliding smoothly over each 
other 
 
Turbulent flow = disorderly high frequency fluctuations 
superimposed on main motion.  Fluctuations are visible 
as eddies which continuously mix, i.e., combine and 
disintegrate (average size is referred to as the scale of 
turbulence). 
      Reynolds decomposition 
  )t(uuu ′+=  
 
 mean   turbulent fluctuation 
 motion 
 
usually u′∼(.01-.1)u , but influence is as if µ increased 
by 100-10,000 or more. 

 
 



57:020 Fluid Mechanics                                                                 Chapter 4 
Professor Fred Stern   Fall 2006 13

Example:  Pipe Flow (Chapter 8 = Flow in Conduits) 
Laminar flow: 
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u(y),velocity profile in a paraboloid 
 
 

 
Turbulent flow:  fuller profile due to turbulent mixing 
extremely complex fluid motion that defies closed form 
analysis. 
 

 
 
Turbulent flow is the most important area of motion fluid 
dynamics research. 
 
 
The most important nondimensional number for describing 
fluid motion is the Reynolds number (Chapter 8) 
 

Re = 
ν

=
µ
ρ VDVD V = characteristic velocity 

D = characteristic length 
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For pipe flow 
 V = V  = average velocity 
 D = pipe diameter 
  
 Re < 2300 laminar flow 
 Re > 2300 turbulent flow 
 
Also depends on roughness, free-stream turbulence, etc. 
 
 
7. Internal vs. External Flows 

Internal flows = completely wall bounded;  
Usually requires viscous analysis, except near entrance 
(Chapter 8) 
 
External flows = unbounded;  i.e., at some distance from 
body or wall flow is uniform  (Chapter 9, Surface 
Resistance)  
 
External Flow exhibits flow-field regions such that both 
inviscid and viscous analysis can be used depending on 
the body shape and Re. 
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Flow Field Regions (high Re flows) 

 
 
Important features: 

1) low Re viscous effects important throughout entire 
fluid domain:  creeping motion 

2) high Re flow about streamlined body viscous effects 
confined to narrow region:  boundary layer and wake 

3) high Re flow about bluff bodies:  in regions of adverse 
pressure gradient flow is susceptible to separation and 
viscous-inviscid interaction is important 

 
 
8.  Separated vs. Unseparated Flow 
 

    Flow remains attached  
Streamlined body    w/o separation 

 
 
 
Bluff body    Flow separates and creates 

the region of reverse  
flow, i.e. separation 
 

forceviscous
forceinertiaVcRe =

ν
=  
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Basic Control-Volume Approach and RTT 
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Reynolds Transport Theorem (RTT) 
 
Need relationship between ( )sysB

dt
d  and changes in 

∫ ∀=∫=
CVCV

ddmcvB βρβ . 

 

1 = time rate of change of B in CV = ∫ ∀=
CV

d
dt
d

dt
cvdB

βρ   

 
2 = net outflux of B from CV across CS =  

R
CS

V n DAβρ ⋅∫  

 
SYS

R
CV CS

dB d d V n dA
dt dt

βρ βρ= ∀+ ⋅∫ ∫  

 
General form RTT for moving deforming control volume 
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Special Cases: 
 
1)  Non-deforming CV moving at constant velocity 
 

( )SYS
R

CV CS

dB d V n dA
dt t

βρ βρ∂
= ∀+ ⋅

∂∫ ∫  

2)  Fixed CV 
 

( )SYS

CV CS

dB d V n dA
dt t

βρ βρ∂
= ∀+ ⋅

∂∫ ∫  

 

 Greens Theorem:  
CV CS

b d b n dA∇⋅ ∀ = ⋅∫ ∫  

 

( ) ( )SYS

CV

dB V d
dt t

βρ βρ∂⎡ ⎤= +∇⋅ ∀⎢ ⎥∂⎣ ⎦∫  

 
Since CV fixed and arbitrary 

0
lim

→∀d
gives differential eq. 

 
3)  Steady Flow:  0=

∂
∂
t

 

 
4)  Uniform flow across discrete CS (steady or 
unsteady) 
 

CSCS

V n dA V n dAβρ βρ⋅ = ⋅∑∫  (- inlet, + outlet) 
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Continuity Equation: 
 
B = M = mass of system 
β = L 
 

0=
dt

dM  by definition, system = fixed amount of mass 

 
Integral Form: 
 

0 R
CV CS

dM d d V n dA
dt dt

ρ ρ= = ∀+ ⋅∫ ∫  

 

R
CV CS

d d V n dA
dt

ρ ρ− ∀ = ⋅∫ ∫  

 
Rate of decrease of mass in CV = net rate of mass outflow across CS 

 
Note simplifications for non-deforming CV, fixed CV, 
steady flow, and uniform flow across discrete CS 
 
Simplifications: 
1. Steady flow:  0Vd

dt
d

CV
=∫ρ−  

 
2. V = constant over discrete dA (flow sections): 

∫ ∑ ⋅ρ=⋅ρ
CS CS

AVdAV  
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3. Incompressible fluid (ρ = constant) 

CS CV

dV dA dV
dt

⋅ = −∫ ∫   conservation of volume 

 
4. Steady One-Dimensional Flow in a Conduit: 

∑ =⋅ρ
CS

0AV  

 
−ρ1V1A1 + ρ2V2A2 = 0 
 
for ρ = constant Q1 = Q2 

 


