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3.4 Hydrostatic Forces on Plane Surfaces

For a static fluid, the shear stress is zero and the only stress
Is the normal stress, i.e., pressure p. Recall thatp is a
scalar, which when in contact with a solid surface exerts a
normal force towards the surface.

¢ ‘fr '—“-"F!LJA'

R "

I:p =—[pndA
A

For a plane surface n = constant such that we can separately
consider the magnitude and line of action of F,.

Fl-F - oo
A

Line of action is towards and normal to A through the
center of pressure (Xcp, Yep)-
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Unless otherwise stated, throughout the chapter assume pam
acts at liquid surface. Also, we will use gage pressure so
that p = 0 at the liquid surface.

Horizontal Surfaces

horizontal surface with area A

i PI1T11 117 p=constant

F=[pdA=pA

Line of action is through centroid of A,
.., (Xep, Yep) = (x, y)
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Inclined Surfaces
g Tz
% _ 5
dz N 'Y ot T e e, e T e R G
Ap _ —’YAZ p=yFSiAG

{,<~ &
(X,y) = centroid of A
FIGURE 3.10
o (Xen,Yeo) = center of pressure
Distribution of

hydrostatic pressure on o
plane surfuce.

View C-C

y
dF = pdA =yy sin o, dA
a/ﬁ(p_% y and sin o are constants
F=[pdA =ysina[ydA
A A B
= y = ljydA
YA A
F=ysinayA 1% moment of area

%{_J

P = pressure at centroid of A

F =pA

Magnitude of resultant hydrostatic force on plane surface is
product of pressure at centroid of area and area of surface.
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Center of Pressure

Center of pressure is in general below centroid since
pressure increases with depth. Center of pressure is
determined by equating the moments of the resultant and
distributed forces about any arbitrary axis.

Determine y., by taking moments about horizontal axis 0-0

Yo = ide
[ypdA
A
Jy(yysino)dA
A
= ysinafy*dA
&

l, = 2" moment of area about 0-0
= moment of inertia

transfer equation: 1, =y A+

| = moment of inertia with respect to horizontal
centroidal axis
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Yoo F =ysina(y’ A+l)
—_ . _2 —_
Yep (PA) =ysina(y A+l)

YepySina YA = ysin a(y A+

Yep is below centroid by 1/yA
Yep — Y for large y

For p, = 0, y must be measured from an equivalent free
surface located po/y above .
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Determine X, by taking moment about y axis

XepF = [xdF
A
[xpdA
A

Xgp (YYsSinaA) = [X(yysina)dA
A

Xep YA = [ XydA
A

ly = product of inertia

= Ixy + XyA transfer equation

XCp g/A = ixy + iglA

For plane surfaces with symmetry about an axis normal to
O'O, IXy :0 and ch = X.
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3.5 Hydrostatic Forces on Curved Surfaces

z N Free surface
A%y
a RN
Ahy
' R
A‘lz DB
A p - 'Yh

F=—[pndA h = distance below
A free surface

Horizontal Components (x and y components)
F,=F-i=—[pn-idA

A%(_J

dA, = projection of ndA onto
- _Af pdA., plane L to x-direction

X

~

dAy =n-jdA

= projection ndA

onto plane L to
y-direction

Therefore, the horizontal components can be determined by
some methods developed for submerged plane surfaces.

The horizontal component of force acting on a curved
surface is equal to the force acting on a vertical projection
of that surface including both magnitude and line of action.
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Vertical Components
F,=F-k=—[pn-kdA
S
- =— [pdA, p=yh
AKt Az
v h=distance
-
A=W below free
surface
g a7
_/ q =y [hdA, =yV
AZ
= weight of
™ fluid above
surface A

The vertical component of force acting on a curved surface
Is equal to the net weight of the column of fluid above the
curved surface with line of action through the centroid of

that fluid volume.
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- Example: Drum Gate

Pressure Diagram
p=vh= yR(l 0056)
n=-sin0i+cosOk

dA={ Rdo
E=—TyR(l—cose)(—sin6?+cosef<)€Rde
— V o ,
P n dA
Fi=F =+ }t(l cos0)sin 6do

o

= ZyERZ
0
= (yR)(2R ¥ ) = same force as that on projection of
p A area onto vertical plane

F, = —yfRZT(l—cosé))cosede
0

:—yfR{a e_g_smze
2 4

= yKRZ{—cos(ﬂ%cosze

0

T R
—yfRZE—yé[ > j TV

= net weight of water above surface
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3.6 Buoyancy

Archimedes Principle

AV

Fe = Fo—Fu

= fluid weight above Surface 2 (ABC)
— fluid weight above Surface 1 (ADC)

= fluid weight equivalent to body volume M
Fg = pgV¥ M = submerged volume

Line of action is through centroid of M = center of
buoyancy

Net Horizontal forces are zero since
Feap = Fecp
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Hydrometry

A hydrometer uses the buoyancy principle to determine
specific weights of liquids.

S= ?S‘/Qf‘w : xw’*hc@.*ua :

Stem Svoss sl
L ?:n«oisaw e F - oY

fﬁ_; ,W.QQ ] ‘ ?Fg‘ 8‘.9#
| w

Wakeo K gdeckark e SV W
T*“ .\_‘C’/x\“’ W= €6"’&N40 i "‘

Bulb

S= X“'/k‘w

W =mg = v = Sy M

W = voM o = Syw(Mo— AM) = Sﬂ,@ M, — aAh)

i M
a = Cross section area stem
/S =M, —aAh aAh =M, — VM /S
Ah = i-[l—lj ~AR(S)
a S
Ah = is?_l calibrate scale using fluids of known S
a
S= Yo
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Example (apparent weight)

King Hero ordered a new crown to be made from pure
gold. When he received the crown he suspected that other
metals had been used in its construction. Archimedes
discovered that the crown required a force of 4.7# to
suspend it when immersed in water, and that it displaced
18.9 in’ of water. He concluded that the crown was not
pure gold. Do you agree?

o W™ ""/MM&X\-R'
= |

7 7 7 7

szert=O:Wa+ Fb_W:O:Wazw_Fb:(yc'yW)¥
W:'Yc¥’ I:b:YW)VL

W W, 47y, V
or Yc:vaJrYw: an
47 +62.4%x18.9/1728
_ _ 4921 —
Te 18.9/1728 Pl

= pc = 15.3 slugs/ft®

~ pseel @Nd since gold is heavier than steel the crown
can not be pure gold
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3.7 Stability of Immersed and Floating Bodies

Here we’ll consider transverse stability. In actual

applications both transverse and longitudinal stability are
important.

Immersed Bodies

Center of
Duoyancy

FIGURE 3.15
Conditions of stability
for immersed bodies. Weight

faj Stable. (b} Neutral. .
fc) Unstable. {a (b} ¢

Static equilibrium requires: > F, =0 and >M =0

>.M = 0 requires that the centers of gravity and buoyancy
coincide, i.e., C = G and body is neutrally stable

If C is above G, then the body is stable (righting moment
when heeled)

If G is above C, then the body is unstable (heeling moment
when heeled)
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Floating Bodies

For a floating body the situation is slightly more
complicated since the center of buoyancy will generally
shift when the body is rotated depending upon the shape of
the body and the position in which it is floating.

Positive GM Negative GM

The center of buoyancy (centroid of the displaced volume)
shifts laterally to the right for the case shown because part
of the original buoyant volume AOB is transferred to a new
buoyant volume EQOD.

The point of intersection of the lines of action of the
buoyant force before and after heel is called the metacenter
M and the distance GM is called the metacentric height. If
GM is positive, that is, if M is above G, then the ship is
stable; however, if GM is negative, the ship is unstable.
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Floating Bodies

[
o = small heel angle £ I 2N
x = CC' = lateral displacement % = e/ *
of C niis S
C = center of buoyancy “@
i.e., centroid of displaced ,,
volume ] il Lo

Solve for GM: find x using
(1) basic definition for centroid of M; and

(2) trigonometry o
Fig. 3.17

(1) Basic definition of centroid of volume M

XV = [xdV = Y x;,A¥.  moment about centerplane

XM = moment V before heel — moment of Maog
— —— — + moment of Meop
= 0 due to symmetry of
original V about y axis
.e., ship centerplane

XM=— | (=X)dV+ [ XdV tan o = y/x
AOB EOD
d\ = ydA = x tan o dA

XM= | x2 tan o dA + [ x2tan o dA
AOB EOD
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XV = tan o[ X*dA
ship waterplane area
— _/
g

moment of inertia of ship waterplane
about z axis O-0O; 1.e., loo

loo = moment of inertia of waterplane
area about centerplane axis

(2) Trigonometry
XV =tanal gq
cc'=x =00 _ cptang
CM = |oo/¥
GM =CM -CG
GM = IO—O—CG
V
GM >0 Stable

GM<O0 Unstable



57:020 Fluid Mechanics
Professor Fred Stern Fall 2005

Chapter 3
33

3.8 Fluids in Rigid-Body Motion

For fluids in motion, the pressure variation is no longer

hydrostatic and is determined from application of Newton’s

2" aw to a fluid element.

Q e »T:p(_\) A‘xl A‘aﬂ\k

Tjj = VISCOUS Stresses
p = pressure
Ma = inertia force

net surface force in X direction

6p arxx +8’ny +

Xnet :[

ZXx jv
Z

_/

W = weight (body force) ax OX oy
R
Newton’s 2" Law pressure viscous

Ma=2>F=Fg+Fs

perunit (+¥) pa=1f +f
volume
3 DV av

Dt 8t A
fs = body force = — pgk

+V-VV

f; = surface force = f, + f,

f, = surface force due to p = -Vp
f, = surface force due to viscous stresses tj;
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DV Foof Neglected in this chapter and
P Dt — b +—|O Ty included later in Section 6.4

when deriving complete
Navier-Stokes equations

inertia force = body force due + surface force due to

to gravity pressure gradients
pE:_@ Note: forV =0
Dt OX Vp = —pgk
P _%P_
ou ou ou ou op ox oy
pl —+U—+V—+W— [=——
ot ox oy oz OX P gy
0z
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Dw op 0
Z. ——=—pg—-——=—-(p+7yZ
P =PI, =5, (P2)

ow  ow ow  ow| op
pl—+U—+V—tW— |=——(p+7y2)
ot OX oy 0z 0z

or pa=-V(p +vy2) Euler’s equation for inviscid flow

V.-V

0 Continuity equation for
incompressible flow

4 equations in four unknowns V and p
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Examples of Pressure Variation From Acceleration

Uniform Linear Acceleration:
pa=-pgk—-Vp
Vp = —p(@+gk)= p(g—@) g=-gk

sz—p[ax?+(g+az)lA<J a=a,i+a,Kk

op op
T ——pa _r
OX Pex 0z

S= unit vector in direction of Vp
=Vp /| vp|

~ —[ax?+(g+az)lA<J

- R2egra, ]

:_p(g+az)

A = unit vector in direction of p = constant

~ —
=8x]j Ijkijk
§x] jKij T~ towp
_a k+(g+a)di by definition lines
kr(g+a,) T of constant p are
[61)2( +(g+az)2]1 normal to Vp

0 =tan" a./ (g + a,) = angle between A and x

d A /2
P _vp-s=plaZ+g+a,]” > po
ds 1\ e J

p= pGS + constant = Pgage = pGS
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Rigid Body Rotation:

Consider a cylindrical tank of liquid rotating at a constant

rate QzQR - Q=ointext
e
\ | Yy fh o or* (Lﬁl”j\ vervan
SHip. A ~ | M(f
;’%ﬁ* Qx(er) :
1% centripetal acceleration
= —1Q%
/ / ’> \ V2 r
: V= Ucéy -\"JLea — ——ér
r
0. 10. 0.
Vp= —a =——@6, +-——6,+—¢€
P=p(g-a) o ro0 0 oz
= —pgk + prQ“g, grad in cylindrical coordinates
op 2 op op
e, —=prQ —=— —=0
o © 2 o0
C (r) along path of a = 0 pressure distribution is hydrostatic
K_JH

v\ Pz =-pg
p=-pgz + C() + ¢

2
p = E TZQZ —pgZz + constant E +Z —V— =constant
2 Y 29

V=rQ)
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The constant is determined by specifying the pressure at
one point; say, p = po at (r, z) = (0, 0)

p=po— pgz + %rzﬂz

Note: pressure is linear in z and parabolic inr

Curves of constant pressure are given by

2

pl o po + rZQ
Pg 29

7= —a+br?

which are paraboloids of revolution, concave upward, with
their minimum point on the axis of rotation

Free surface is found by requiring volume of liquid to be
constant (before and after rotation)

The unit vector in the direction of Vpis 2

s —pgk +prQ%e, T
[(pg)2 + (prQZ)ZT/Z "
N
<
dz g A
tanezd—:—? slope of S
r r

— _/
~—
2

e, r= Clexp{— Ej equation of Vp surfaces
g
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Fig 2.23 Experimental demonstration with buoyant streamers of the fluid force field in
rigid-body rotation: (top) fluid at rest (streamers hang vertically upward); (bottom) rigid-
body rotation (streamers are aligned with the direction of maximum pressure gradient).
(From Ref. 5. Courtesy of R. lan Fletcher.)

94 PRESSURE DISTRIBUTION IN A FLUID



