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3.4 Hydrostatic Forces on Plane Surfaces 
 
For a static fluid, the shear stress is zero and the only stress 
is the normal stress, i.e., pressure p.  Recall that p is a 
scalar, which when in contact with a solid surface exerts a 
normal force towards the surface. 
 
 
 
 
 
 

∫−=
A

p dAnpF  

 
 
 
 
 
 
For a plane surface n = constant such that we can separately 
consider the magnitude and line of action of Fp. 
 

∫==
A

p pdAFF  

 
Line of action is towards and normal to A through the 
center of pressure (xcp, ycp). 
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p = constant

Unless otherwise stated, throughout the chapter assume patm 
acts at liquid surface.  Also, we will use gage pressure so 
that p = 0 at the liquid surface. 
 
 
Horizontal Surfaces 

  
 
    F 
 

∫ == pApdAF  
 
Line of action is through centroid of A,  
i.e., (xcp, ycp) = ( )y,x  
 

horizontal surface with area A
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Inclined Surfaces 

dF = pdA = γy sin α dA  
 

∫∫ αγ==
AA

ydAsinpdAF  

     
 

AysinF αγ=  

 
 
 
Magnitude of resultant hydrostatic force on plane surface is 
product of pressure at centroid of area and area of surface. 

Ay  

 

p  = pressure at centroid of A 

γ and sin α are constants 
 

∫= ydA
A
1y  

 
1st moment of area 

ApF =  

g z 

(xcp,ycp) = center of pressure
(x,y) = centroid of A 

y 

F 

x 

dp
dz

p z

= −γ

∆ = −γ∆
 

p 
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Center of Pressure 
 
Center of pressure is in general below centroid since 
pressure increases with depth.  Center of pressure is 
determined by equating the moments of the resultant and 
distributed forces about any arbitrary axis. 
 
 
Determine ycp by taking moments about horizontal axis 0-0 
 

ycpF   =  ∫
A

ydF 

  ∫
A

pdAy  

∫ αγ
A

dA)siny(y  

     = ∫αγ
A

2dAysin  

    
     Io = 2nd moment of area about 0-0 
      = moment of inertia 
 
 
 
transfer equation: IAyI 2

o +=  
 

=  moment of inertia with respect to horizontal  
centroidal axis 

 
 
 

I
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)IAy(sinAysiny

)IAy(sin)Ap(y

)IAy(sinFy

2
cp

2
cp

2
cp

+αγ=αγ

+αγ=

+αγ=

 

 IAyAyy 2
cp +=  

 
   
 
ycp is below centroid by Ay/I  
 
ycp → y  for large y 
 
For po ≠ 0, y must be measured from an equivalent free 
surface located po/γ above y. 
 
 

cp
Iy y

yA
= +  
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Determine xcp by taking moment about y axis 
 
 xcpF    = ∫

A
xdF 

   ∫
A

xpdA  

 
∫ αγ=αγ
A

cp dA)siny(x)Asiny(x  

 
 ∫=

A
cp xydAAyx  

    = AyxIxy +  transfer equation 
 
 AyxIAyx xycp +=  
  
   
 
 
For plane surfaces with symmetry about an axis normal to 
0-0, 0Ixy =  and xcp = x . 
 

Ixy = product of inertia 

x
Ay

Ix xy
cp +=  
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3.5 Hydrostatic Forces on Curved Surfaces 
 

 
 
 

 
Horizontal Components  (x and y components) 
 ∫ ⋅−=⋅=

A
x dAînpîFF  

 
   ∫−=

xA
xpdA  

 
 ∫−=⋅=

yA
yy pdAĵFF  dAĵndAy ⋅=  

       = projection ndA 
          onto plane ⊥ to  

   y-direction 
    
Therefore, the horizontal components can be determined by 
some methods developed for submerged plane surfaces. 
 
The horizontal component of force acting on a curved 
surface is equal to the force acting on a vertical projection 
of that surface including both magnitude and line of action. 

Free surface

∫−=
A

dAnpF  

p = γh 
 
h = distance below 
free surface 

dAx = projection of ndA onto 
plane ⊥ to x-direction 
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Vertical Components 
 
 
 

    ∫ ⋅−=⋅=
A

z dAk̂npk̂FF  

      = ∫−
zA

zpdA  p = γh 

         h=distance  
below free  
surface 
 

      = ∫ γ=γ
zA

z VhdA  

= weight of  
fluid above  
surface A 

 
 
The vertical component of force acting on a curved surface 
is equal to the net weight of the column of fluid above the 
curved surface with line of action through the centroid of 
that fluid volume. 
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Example:  Drum Gate 
 
 
 
 
 
Pressure Diagram 
p = γh = γR(1-cosθ) 

k̂cosîsinn θ+θ−=  
dA =  Rdθ 

∫ θθ+θ−θ−γ−=
π

0
Rd)k̂cosîsin)(cos1(RF  

    p     n    dA 
 

∫ θθθ−γ+==⋅
π

0

2
x dsin)cos1(RFîF  

 = 2

0

2 R22cos
4
1cosR γ=⎢⎣

⎡ θ+θ−γ
π

 

 = (γR)(2R ) ⇒ same force as that on projection of  
     p       A       area onto vertical plane 

∫ θθθ−γ−=
π

0

2
z dcos)cos1(RF  

     =
⎢
⎢
⎣

⎡ θ
−

θ
−θγ−

π

0

2

4
2sin

2
sinR  

     = V
2
R

2
R

2
2 γ=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ π
γ=

π
γ  

     ⇒ net weight of water above surface 
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3.6 Buoyancy 
 
Archimedes Principle 
 

 
FB  =  Fv2 – Fv1 
    
      = fluid weight above Surface 2 (ABC)  

– fluid weight above Surface 1 (ADC) 
 
      = fluid weight equivalent to body volume V 
 
FB = ρgV    V = submerged volume 
 
Line of action is through centroid of V = center of 
buoyancy 
 
Net Horizontal forces are zero since 
  FBAD = FBCD 
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V 

Hydrometry 
 
A hydrometer uses the buoyancy principle to determine 
specific weights of liquids. 
 
 
 
 
 
 
 
 
 
 
 

W = mg = γfV = SγwV 
 
W = γwV o = Sγw(Vo − ∆V) = Sγw(Vo − a∆h) 
       γf 
      a = cross section area stem 
 Vo/S = Vo − a∆h   a∆h = Vo – Vo/S 

       ∆h = ⎟
⎠
⎞

⎜
⎝
⎛ −⋅

S
11

a
Vo =∆h(S) 

 

     ∆h = 
S

1S
a

Vo −
⋅  calibrate scale using fluids of known S 

 

     S = 
haV

V

0

o

∆−
 

 

Stem 

Bulb 
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Example (apparent weight) 
 
King Hero ordered a new crown to be made from pure 
gold.  When he received the crown he suspected that other 
metals had been used in its construction.  Archimedes 
discovered that the crown required a force of 4.7# to 
suspend it when immersed in water, and that it displaced 
18.9 in3 of water.  He concluded that the crown was not 
pure gold.  Do you agree? 
 
 
 
 
 
 
 
 
∑Fvert = 0 = Wa + Fb – W = 0 ⇒ Wa = W – Fb = (γc - γw)V 
       W=γcV,   Fb = γwV  

or  γc = 
V

VW
V

W wa
w

a γ+
=γ+  

 

g1.492
1728/9.18

1728/9.184.627.4
cc ρ==

×+
=γ  

 
⇒   ρc = 15.3 slugs/ft3 
 

∼ ρsteel  and since gold is heavier than steel the crown  
can not be pure gold 
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3.7 Stability of Immersed and Floating Bodies 
 
Here we’ll consider transverse stability.  In actual 
applications both transverse and longitudinal stability are 
important. 
 
Immersed Bodies 

 
Static equilibrium requires:  ∑ =∑= 0Mand0Fv  
 
∑M = 0 requires that the centers of gravity and buoyancy 
coincide, i.e., C = G and body is neutrally stable 
 
If C is above G, then the body is stable (righting moment 
when heeled) 
 
If G is above C, then the body is unstable (heeling moment 
when heeled) 
 



57:020 Fluid Mechanics                                                                 Chapter 3 
Professor Fred Stern   Fall 2005 30

Floating Bodies 
 
For a floating body the situation is slightly more 
complicated since the center of buoyancy will generally 
shift when the body is rotated depending upon the shape of 
the body and the position in which it is floating. 
 

     Positive GM      Negative GM  
 
The center of buoyancy (centroid of the displaced volume) 
shifts laterally to the right for the case shown because part 
of the original buoyant volume AOB is transferred to a new 
buoyant volume EOD. 
 
The point of intersection of the lines of action of the 
buoyant force before and after heel is called the metacenter 
M and the distance GM is called the metacentric height.  If 
GM is positive, that is, if M is above G, then the ship is 
stable; however, if GM is negative, the ship is unstable. 
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Floating Bodies 
 
α = small heel angle 

CCx ′=  = lateral displacement 
  of C 

C = center of buoyancy 
i.e., centroid of displaced  
volume V 

 
Solve for GM:  find x  using 
(1) basic definition for centroid of V; and 
(2) trigonometry 
         Fig. 3.17 
 
(1) Basic definition of centroid of volume V 
       

∫ ∑ ∆== ii VxVxdVx  moment about centerplane 
 

Vx  = moment V before heel – moment of VAOB  
+ moment of VEOD 

  = 0 due to symmetry of  
   original V about y axis 
   i.e., ship centerplane 
  
 
xV ( x)dV xdV

AOB EOD
=− − +∫ ∫   tan α = y/x 

       dV = ydA = x tan α dA 
2 2xV x tan dA x tan dA

AOB EOD
= α + α∫ ∫  
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∫α= dAxtanVx 2  
  ship waterplane area 
 
   moment of inertia of ship waterplane  
   about z axis O-O; i.e., IOO 
 
IOO = moment of inertia of waterplane  
     area about centerplane axis 
 
(2) Trigonometry 

α=
α

==′

α=

tanCM
V

ItanxCC

ItanVx

OO

OO
 

 
  CM = IOO / V 
 
  GM = CM – CG 
 

  GM = CG
V

IOO −    

 
GM > 0  Stable 
 
GM < 0  Unstable 
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3.8 Fluids in Rigid-Body Motion 
 
For fluids in motion, the pressure variation is no longer 
hydrostatic and is determined from application of Newton’s 
2nd Law to a fluid element. 

τij = viscous stresses       net surface force in X direction 
p = pressure     
Ma = inertia force 
W = weight (body force) 
 
Newton’s 2nd Law    pressure  viscous 

 
Ma = ∑F = FB + FS 

 
per unit (÷ V)   ρa = fb + fs 
volume 

   a = VV
t
V

Dt
VD

∇⋅+
∂
∂

=  

   fs = body force = k̂gρ−  
 
   fs = surface force = fp + fv 
   fp = surface force due to p = −∇p 
   fv = surface force due to viscous stresses τij 

V
zyxx

pX zxyxxx
net ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
τ∂

+
∂

τ∂
+

∂
τ∂

+
∂
∂

−=  
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vpb fff
Dt

VD
++=ρ  

 

pk̂g
Dt

VD
∇−ρ−=ρ  

 
 
inertia force = body force due   +   surface force due to 
   to gravity   pressure gradients 
 
 
 
 

x: 
x
p

Dt
Du

∂
∂

−=ρ  

 

 
x
p

z
uw

y
uv

x
uu

t
u

∂
∂

−=⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

ρ  

 
 
 
 

y: 
y
p

Dt
Dv

∂
∂

−=ρ  

 

 
y
p

z
vw

y
vv

x
vu

t
v

∂
∂

−=⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

ρ  

 
 

Neglected in this chapter and 
included later in Section 6.4 
when deriving complete 
Navier-Stokes equations 

Note: for V = 0 

 

γ−=ρ−=
∂
∂

=
∂
∂

=
∂
∂

ρ−=∇

g
z
p

0
y
p

x
p

k̂gp
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z: ( )zp
zz

pg
Dt
Dw

γ+
∂
∂

−=
∂
∂

−ρ−=ρ  

 
 

 ( )zp
z
p

z
ww

y
wv

x
wu

t
w

γ+
∂
∂

−=⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

ρ  

 
 
 
or  ρa = −∇(p + γz)  Euler’s equation for inviscid flow 
 
 ∇ ⋅ V = 0   Continuity equation for  

incompressible flow 
 
 
4 equations in four unknowns V and p 
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Examples of Pressure Variation From Acceleration 
 
Uniform Linear Acceleration: 

( ) ( ) k̂ggagk̂gap

pk̂ga

−=−ρ=+ρ−=∇

∇−ρ−=ρ
 

( )[ ] k̂aîaak̂agîap zxzx +=++ρ−=∇  

( )zx ag
z
pa

x
p

+ρ−=
∂
∂

ρ−=
∂
∂  

ŝ= unit vector in direction of ∇p 

=∇p /⏐∇p⏐ 

= ( )[ ]
( )[ ] 2/12

z
2
x

zx

aga

k̂agîa

++

++−  

 
n̂  = unit vector in direction of p = constant 

    = ĵŝ×    ijkijk 

    = 
[ ] 2/12

z
2
x

zx

)ag(a

î)ag(k̂a

++

++−  

 
θ = tan-1 ax / (g + az) = angle between n̂  and x 

( )[ ] 2/12
z

2
x agaŝp

ds
dp

++ρ=⋅∇=  >  ρg 

p = ρGs + constant  ⇒  pgage = ρGs 
G

⊥ to ∇p 
by definition lines 
of constant p are 
normal to ∇p 
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Rigid Body Rotation: 
 
Consider a cylindrical tank of liquid rotating at a constant 
rate k̂Ω=Ω   Ω = ω in text 
 
 
 
      ( )ora ×Ω×Ω=   

centripetal acceleration 
 

        = r
2êrΩ−      

        = r

2
ê

r
V

−  

 

)ag(p −ρ=∇     zr ê
z

ê
r
1ê

r ∂
∂

+
θ∂
∂

+
∂
∂

=∇ θ  

      = r
2êrk̂g Ωρ+ρ−         grad in cylindrical coordinates 

 

i.e.,  2r
r
p

Ωρ=
∂
∂   g

z
p

ρ−=
∂
∂    0p

=
θ∂
∂  

  C (r) 

and p = c)z(fr
2

22 ++Ω
ρ  

  
 

  p = gzr
2

22 ρ−Ω
ρ  + constant  =−+

γ g2
Vzp 2

constant 

         V = rΩ

along path of a = 0 pressure distribution is hydrostatic 

pz = -ρg   
p = -ρgz + C(r) + c 
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The constant is determined by specifying the pressure at 
one point; say, p = po at (r, z) = (0, 0) 
 

 p = po − ρgz + 
2
1 r2Ω2 

 
Note: pressure is linear in z and parabolic in r 
 
Curves of constant pressure are given by 
 

 z = 2
22

o1 bra
g2

r
g
pp

+=
Ω

+
ρ
−  

 
which are paraboloids of revolution, concave upward, with 
their minimum point on the axis of rotation 
 
Free surface is found by requiring volume of liquid to be 
constant (before and after rotation) 
 
The unit vector in the direction of ∇p is 

 
( ) ( ) 2/1222

r
2

rg

êrk̂gŝ

⎥⎦
⎤

⎢⎣
⎡ Ωρ+ρ

Ωρ+ρ−
=  

 

2r
g

dr
dztan

Ω
−==θ   slope of ŝ  

 

i.e.,  r = C1exp ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Ω
−

g
z2

  equation of ∇p surfaces
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