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3.4 Hydrostatic Forces on Plane Surfaces
For a static fluid, the shear stress is zero and the only stress is the normal stress, i.e., pressure p.  Recall that p is a scalar, which when in contact with a solid surface exerts a normal force towards the surface.
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For a plane surface n = constant such that we can separately consider the magnitude and line of action of Fp.
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Line of action is towards and normal to A through the center of pressure (xcp, ycp).

Unless otherwise stated, throughout the chapter assume patm acts at liquid surface.  Also, we will use gage pressure so that p = 0 at the liquid surface.
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Line of action is through centroid of A, 

i.e., (xcp, ycp) = 
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Magnitude of resultant hydrostatic force on plane surface is product of pressure at centroid of area and area of surface.
Center of Pressure

Center of pressure is in general below centroid since pressure increases with depth.  Center of pressure is determined by equating the moments of the resultant and distributed forces about any arbitrary axis.

Determine ycp by taking moments about horizontal axis 0-0

ycpF   = 
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Io = 2nd moment of area about 0-0







= moment of inertia

transfer equation:
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ycp is below centroid by 
[image: image14.wmf]A

y

/

I


ycp ( 
[image: image15.wmf]y

 for large 
[image: image16.wmf]y


For po ( 0, y must be measured from an equivalent free surface located po/( above 
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Determine xcp by taking moment about y axis


xcpF    =
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transfer equation
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For plane surfaces with symmetry about an axis normal to 0-0, 
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3.5 Hydrostatic Forces on Curved Surfaces




Horizontal Components

(x and y components)
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Therefore, the horizontal components can be determined by some methods developed for submerged plane surfaces.

The horizontal component of force acting on a curved surface is equal to the force acting on a vertical projection of that surface including both magnitude and line of action.

Vertical Components
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The vertical component of force acting on a curved surface is equal to the net weight of the column of fluid above the curved surface with line of action through the centroid of that fluid volume.

Example:  Drum Gate


Pressure Diagram

p = (h = (R(1-cos()
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     ( net weight of water above surface

3.6 Buoyancy
Archimedes Principle


FB  =  Fv2 – Fv1
      = fluid weight above Surface 2 (ABC) 

· fluid weight above Surface 1 (ADC)

      = fluid weight equivalent to body volume V
FB = (gV



V = submerged volume

Line of action is through centroid of V = center of buoyancy

Net Horizontal forces are zero since



FBAD = FBCD
Hydrometry

A hydrometer uses the buoyancy principle to determine specific weights of liquids.




W = mg = (fV = S(wV
W = (wV o = S(w(Vo ( (V) = S(w(Vo ( a(h)







 (f






a = cross section area stem


Vo/S = Vo ( a(h


a(h = Vo – Vo/S








(h = 
[image: image43.wmf]÷

ø

ö

ç

è

æ

-

×

S

1

1

a

V

o

=(h(S)

     (h = 
[image: image44.wmf]S

1

S

a

V

o

-

×


calibrate scale using fluids of known S
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Example (apparent weight)

King Hero ordered a new crown to be made from pure gold.  When he received the crown he suspected that other metals had been used in its construction.  Archimedes discovered that the crown required a force of 4.7# to suspend it when immersed in water, and that it displaced 18.9 in3 of water.  He concluded that the crown was not pure gold.  Do you agree?


(Fvert = 0 = Wa + Fb – W = 0 ( Wa = W – Fb = ((c - (w)V







W=(cV, 
 Fb = (wV 
or  (c = 
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(   (c = 15.3 slugs/ft3
( (steel  and since gold is heavier than steel the crown 

can not be pure gold

3.7 Stability of Immersed and Floating Bodies
Here we’ll consider transverse stability.  In actual applications both transverse and longitudinal stability are important.

Immersed Bodies

Static equilibrium requires:  
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(M = 0 requires that the centers of gravity and buoyancy coincide, i.e., C = G and body is neutrally stable

If C is above G, then the body is stable (righting moment when heeled)

If G is above C, then the body is unstable (heeling moment when heeled)

Floating Bodies

For a floating body the situation is slightly more complicated since the center of buoyancy will generally shift when the body is rotated depending upon the shape of the body and the position in which it is floating.

     Positive 
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   Negative 
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The center of buoyancy (centroid of the displaced volume) shifts laterally to the right for the case shown because part of the original buoyant volume AOB is transferred to a new buoyant volume EOD.

The point of intersection of the lines of action of the buoyant force before and after heel is called the metacenter M and the distance GM is called the metacentric height.  If GM is positive, that is, if M is above G, then the ship is stable; however, if GM is negative, the ship is unstable.

Floating Bodies

( = small heel angle
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Solve for GM:  find 
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(1) basic definition for centroid of V; and

(2) trigonometry










Fig. 3.17

(1) Basic definition of centroid of volume V
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moment about centerplane
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= 0 due to symmetry of 




original V about y axis




i.e., ship centerplane
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dV = ydA = x tan ( dA
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ship waterplane area





moment of inertia of ship waterplane 




about z axis O-O; i.e., IOO
IOO = moment of inertia of waterplane 

  
  area about centerplane axis

(2) Trigonometry
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CM = IOO / V



GM = CM – CG



GM = 
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GM > 0

Stable

GM < 0

Unstable

3.8 Fluids in Rigid-Body Motion
For fluids in motion, the pressure variation is no longer hydrostatic and is determined from application of Newton’s 2nd Law to a fluid element.

(ij = viscous stresses
      net surface force in X direction

p = pressure





Ma = inertia force

W = weight (body force)


Newton’s 2nd Law



pressure

viscous

Ma = (F = FB + FS
per unit (( V)   (a = fb + fs
volume




a = 
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fs = body force = 
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fs = surface force = fp + fv



fp = surface force due to p = ((p




fv = surface force due to viscous stresses (ij
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pressure gradients

x:
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y:
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z:
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or  (a = (((p + (z)

Euler’s equation for inviscid flow


( ( V = 0


Continuity equation for 

incompressible flow

4 equations in four unknowns V and p

Examples of Pressure Variation From Acceleration
Uniform Linear Acceleration:
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( = tan-1 ax / (g + az) = angle between 
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Rigid Body Rotation:

Consider a cylindrical tank of liquid rotating at a constant rate 
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centripetal acceleration
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       grad in cylindrical coordinates

i.e., 
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V = r(

The constant is determined by specifying the pressure at one point; say, p = po at (r, z) = (0, 0)


p = po ( (gz + 
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Curves of constant pressure are given by
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which are paraboloids of revolution, concave upward, with their minimum point on the axis of rotation

Free surface is found by requiring volume of liquid to be constant (before and after rotation)

The unit vector in the direction of (p is
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slope of 
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i.e.,  r = C1exp
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equation of (p surfaces


horizontal surface with area A



p = constant







( and sin ( are constants



� EMBED Equation.3  ���



1st moment of area



� EMBED Equation.3  ���



= pressure at centroid of A



� EMBED Equation.3  ���



Ixy = product of inertia



Free surface



p = (h



h = distance below free surface



� EMBED Equation.3  ���



dAx = projection of ndA onto plane ( to x-direction



V



Stem



Bulb



� EMBED Equation.3  ���
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� EMBED Equation.3  ���



� EMBED Equation.3  ���



g



z



p



(xcp,ycp) = center of pressure



(x,y) = centroid of A



y



F



x



( to (p

by definition lines of constant p are normal to (p



� EMBED Equation.DSMT4  ���



G



along path of a = 0 pressure distribution is hydrostatic



pz = -(g  

p = -(gz + C(r) + c



� EMBED Equation.3  ���



Neglected in this chapter and included later in Section 6.4 when deriving complete Navier-Stokes equations



Note: for V = 0

	� EMBED Equation.3  ���
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