Chapter 3 Bernoulli Equation
3.1 Flow Patterns: Streamlines, Pathlines, Streaklines
1) A streamline   is a line that is everywhere tangent to the velocity vector at a given instant.
[image: http://www.grc.nasa.gov/WWW/K-12/airplane/Images/stream.gif][image: http://www.aerospaceweb.org/question/aerodynamics/drafting/streamline.jpg]
Examples of streamlines around an airfoil (left) and a car (right)
2) A pathline is the actual path traveled by a given fluid particle.
[image: ][image: ]
An illustration of pathline (left) and an example of pathlines, motion of water induced by surface waves (right)
3) A streakline is the locus of particles which have earlier passed through a particular point.  
[image: ][image: ]
An illustration of streakline (left) and an example of streaklines, flow past a full-sized streamlined vehicle in the GM aerodynamics laboratory wind tunnel, and 18-ft by 34-ft test section facilility by a 4000-hp, 43-ft-diameter fan (right)
Note:
1. For steady flow, all 3 coincide.
2. For unsteady flow,  pattern changes with time, whereas pathlines and streaklines are generated as the passage of time
Streamline:
By definition we must have  which upon expansion yields the equation of the streamlines for a given time 

where  = integration parameter.  So if (, , ) know, integrate with respect to  for  with I.C. (, , , ) at  and then eliminate .
Pathline:
The path line is defined by integration of the relationship between velocity and displacement.

Integrate , ,  with respect to  using I.C. (, , , ) then eliminate .
Streakline:
To find the streakline, use the integrated result for the pathline retaining time as a parameter.  Now, find the integration constant which causes the pathline to pass through (, , ) for a sequence of time .  Then eliminate .



3.2 Streamline Coordinates
Equations of fluid mechanics can be expressed in different coordinate systems, which are chosen for convenience, e.g., application of boundary conditions: Cartesian (, , ) or orthogonal curvilinear (e.g., , , ) or non-orthogonal curvilinear.  A natural coordinate system is streamline coordinates (, , ); however, difficult to use since solution to flow problem () must be known to solve for steamlines.
For streamline coordinates, since  is tangent to  there is only one velocity component.

where  by definition.
[image: ]
Figure 4.8 Streamline coordinate system for two-dimensional flow.
The acceleration is

where,



[image: ]
Figure 4.9 Relationship between the unit vector along the streamline, , and the radius of curvature of the streamline, 
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where,
  = local  in  direction
 = local  in  direction
 = convective  due to spatial gradient of  
i.e. convergence /divergence 
 = convective  due to curvature of  : centrifugal accerleration


3.3 Bernoulli Equation
Consider the small fluid particle of size  by  in the plane of the figure and  normal to the figure as shown in the free-body diagram below.  For steady flow, the components of Newton’s second law along the streamline and normal directions can be written as following:
[image: ]
1) Along a streamline
	
where,
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Thus,
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			 change in speed due to  and  (i.e.  along )

2) Normal to a streamline
	
where,	
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Thus,
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			 streamline curvature is due to  and  (i.e.  along )


In a vector form:
		            (Euler equation)
or 		 
Steady flow,  = constant,  equation
		 
		 

Steady flow,  = constant,  equation
		 

For curved streamlines  (= constant for static fluid) decreases in the  direction, i.e. towards the local center of curvature.
It should be emphasized that the Bernoulli equation is restricted to the following:
· inviscid flow
· steady flow
· incompressible flow
· flow along a streamline
Note that if in addition to the flow being inviscid it is also irrotational, i.e. rotation of fluid =  = vorticity =  = 0, the Bernoulli constant is same for all , as will be shown later.
3.4 Physical interpretation of Bernoulli equation
Integration of the equation of motion to give the Bernoulli equation actually corresponds to the work-energy principle often used in the study of dynamics.  This principle results from a general integration of the equations of motion for an object in a very similar to that done for the fluid particle.  With certain assumptions, a statement of the work-energy principle may be written as follows:
The work done on a particle by all forces acting on the particle is equal to the change of the kinetic energy of the particle.
The Bernoulli equation is a mathematical statement of this principle.
In fact, an alternate method of deriving the Bernoulli equation is to use the first and second laws of thermodynamics (the energy and entropy equations), rather than Newton’s second law.  With the approach restrictions, the general energy equation reduces to the Bernoulli equation.
An alternate but equivalent form of the Bernoulli equation is

along a streamline.
Pressure head: 
Velocity head: 
Elevation head: 
The Bernoulli equation states that the sum of the pressure head, the velocity head, and the elevation head is constant along a streamline.
3.5 Static, Stagnation, Dynamic, and Total Pressure

along a streamline.
Static pressure: 
Dynamic pressure: 
Hydrostatic pressure: 
[image: ]
Stagnation points on bodies in flowing fluids.
Stagnation pressure:  (assuming elevation effects are negligible) where  and  are the pressure and velocity of the fluid upstream of stagnation point.  At stagnation point, fluid velocity  becomes zero and all of the kinetic energy converts into a pressure rize.
Total pressure:  (along a streamline)

[image: ] [image: ]
The Pitot-static tube (left) and typical Pitot-static tube designs (right).

[image: ]
Typical pressure distribution along a Pitot-static tube.


3.6 Applications of Bernoulli Equation
1) Stagnation Tube
[image: Fig5-5]
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Limited by length of tube and need for free surface reference


2) Pitot Tube
[image: Fig5-6]




where,  and  = piezometric head


 from manometer or pressure gage

For gas flow 

3) Free Jets
[image: ]
Vertical flow from a tank
Application of Bernoulli equation between points (1) and (2) on the streamline shown gives

Since , , , , , we have


Bernoulli equation between points (1) and (5) gives


4) Simplified form of the continuity equation

[image: ]
Steady flow into and out of a tank

Obtained from the following intuitive arguments:
Volume flow rate: 
Mass flow rate: 

Conservation of mass requires


For incompressible flow , we have

or 


5) Volume Rate of Flow (flowrate, discharge)
1. Cross-sectional area oriented normal to velocity vector 
    (simple case where 
[image: Page7-4]
 = constant:  = volume flux =  [m/s  m2 = m3/s]
 constant: 
Similarly the mass flux = 
2. General case


[image: Page4-4case2]






Average velocity:



Example:
At low velocities the flow through a long circular tube, i.e. pipe, has a parabolic velocity distribution (actually paraboloid of revolution).

where,  = centerline velocity
[image: Page4-5]
a) find  and 



where, ,  and not , 


6) Flowrate measurement
Various flow meters are governed by the Bernoulli and continuity equations.
[image: ]
Typical devices for measuring flowrate in pipes.
Three commonly used types of flow meters are illustrated: the orifice meter, the nozzle meter, and the Venturi meter.  The operation of each is based on the same physical principles—an increase in velocity causes a decrease in pressure.  The difference between them is a matter of cost, accuracy, and how closely their actual operation obeys the idealized flow assumptions.
We assume the flow is horizontal (), steady, inviscid, and incompressible between points (1) and (2).  The Bernoulli equation becomes:


If we assume the velocity profiles are uniform at sections (1) and (2), the continuity equation can be written as:

where  is the small () flow area at section (2).  Combination of these two equations results in the following theoretical flowrate

assumed vena contracta = 0, i.e., no viscous effects. Otherwise,

where  = contraction coefficient
[image: ]    [image: ]
A smooth, well-contoured nozzle (left) and a sharp corner (right)
The velocity profile of the left nozzle is not uniform due to differences in elevation, but in general  and we can safely use the centerline velocity, , as a reasonable “average velocity.”  
For the right nozzle with a sharp corner,  will be less than .  This phenomenon, called a vena contracta effect, is a result of the inability of the fluid to turn the sharp 90 corner.

[image: ]
Figure 3.14 Typical flow patterns and contraction coefficients
The vena contracta effect is a function of the geometry of the outlet.  Some typical configurations are shown in Fig. 3.14 along with typical values of the experimentally obtained contraction coefficient, , where  and  are the areas of the jet a the vena contracta and the area of the hole, respectively.


Other flow meters based on the Bernoulli equation are used to measure flowrates in open channels such as flumes and irrigation ditches.  Two of these devices, the sluice gate and the sharp-crested weir, are discussed below under the assumption of steady, inviscid, incompressible flow.
[image: ]
Sluice gate geometry
We apply the Bernoulli and continuity equations between points on the free surfaces at (1) and (2) to give:

and 

With the fact that :

In the limit of , then :

[image: ]
Rectangular, sharp-crested weir geometry
For such devices the flowrate of liquid over the top of the weir plate is dependent on the weir height, , the width of the channel, , and the head, , of the water above the top of the weir.  Between points (1) and (2) the pressure and gravitational fields cause the fluid to accelerate from velocity  to velocity . At (1) the pressure is , while at (2) the pressure is essentially atmospheric, .  Across the curved streamlines directly above the top of the weir plate (section a–a), the pressure changes from atmospheric on the top surface to some maximum value within the fluid stream and then to atmospheric again at the bottom surface.
For now, we will take a very simple approach and assume that the weir flow is similar in many respects to an orifice-type flow with a free streamline. In this instance we would expect the average velocity across the top of the weir to be proportional to  and the flow area for this rectangular weir to be proportional to . Hence, it follows that



3.7 Energy grade line (EGL) and hydraulic grade line (HGL)
This part will be covered later at Chapter 5.



3.8 Limitations of Bernoulli Equation
Assumptions used in the derivation Bernoulli Equation:
(1) Inviscid 
(2) Incompressible 
(3) Steady 
(4) Conservative body force
1) Compressibility Effects: 
The Bernoulli equation can be modified for compressible flows.  A simple, although specialized, case of compressible flow occurs when the temperature of a perfect gas remains constant along the streamline—isothermal flow.  Thus, we consider , where  is constant (In general, , , and  will vary).  An equation similar to the Bernoulli equation can be obtained for isentropic flow of a perfect gas.  For steady, inviscid, isothermal flow, Bernoulli equation becomes

The constant of integration is easily evaluated if , , and  are known at some location on the streamline.  The result is

2) Unsteady Effects: 
The Bernoulli equation can be modified for unsteady flows. With the inclusion of the unsteady effect () the following is obtained:
 (along a streamline)
For incompressible flow this can be easily integrated between points (1) and (2) to give
 (along a streamline)
3) Rotational Effects
Care must be used in applying the Bernoulli equation across streamlines.  If the flow is “irrotational” (i.e., the fluid particles do not “spin” as they move), it is appropriate to use the Bernoulli equation across streamlines.  However, if the flow is “rotational” (fluid particles “spin”), use of the Bernoulli equation is restricted to flow along a streamline.
4) Other Restrictions
Another restriction on the Bernoulli equation is that the flow is inviscid. The Bernoulli equation is actually a first integral of Newton's second law along a streamline.  This general integration was possible because, in the absence of viscous effects, the fluid system considered was a conservative system. The total energy of the system remains constant.  If viscous effects are important the system is nonconservative and energy losses occur.  A more detailed analysis is needed for these cases.
The Bernoulli equation is not valid for flows that involve pumps or turbines.  The final basic restriction on use of the Bernoulli equation is that there are no mechanical devices (pumps or turbines) in the system between the two points along the streamline for which the equation is applied.  These devices represent sources or sinks of energy.  Since the Bernoulli equation is actually one form of the energy equation, it must be altered to include pumps or turbines, if these are present.
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