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Chapter 2. Pressure and Fluid Statics

Pr essur e

For astatic fluid, the only stressis the normal stress since
by definition afluid subjected to a shear stress must deform
and undergo motion. Normal stresses are referred to as
pressure p.

For the general case, the stress on afluid element or at a
point is atensor

3d Tij = Stress tensor
, T3 T,
; ‘/k“ Gix - Txx Txy Txz
s - x Tyx  Tyy Tyz
. R
Tor Tox Tzy Tz
= .
i =force
j = direction

For astatic fluid,
Ti=0 i# shear stresses=0

Ti =—P=Txx = Tyy =Tz | =} normal stresses =-p

Also shows that p isisotropic, one value at a point which is
independent of direction, ascalar.
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Definition of Pressure;

SF _ dF
P=limsy=gx N/m’=Pa(Pascal)

0A—0
F = normal force acting over A

As already noted, p is ascalar, which can be easily
demonstrated by considering the equilibrium of forceson a
wedge-shaped fluid element

Geometry | N—* |
AA =AL Ay VT et
AX = Ag COSOL | e _:__.Lll”eight  |az=aisina
Az =AY sina ! TN
l Ax=Alcosa
pAdcoso
W =mg
ZFX - O = p#g
PrAA Sina - plAA Sina =0 =W
Pn = Px M = Y2 AXAzAyY
>F,=0 —p,AlAy coso.+ p, ACAy cosal
-pnAA cos o + p,AA cosa - W =0 YMzcosocsmocAy 0
-1 (M cosor)(Alsino)Ay +AlAy coso

AX AZ —p, +pz—%A£Sinoc=0
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—pn+pz—%Msinoc:O
p,=p, forAl—O0
L€, Pn=Px=Py=Pp:

pissingle valued at a point and independent of direction.

A body/surface in contact with a static fluid experiences a
forcedueto p

Fp =~ [pndA e = - pudd
S8 e J_,-»»-—;‘\.,..___x" N & Gr*w{ﬁ‘"-ﬁr-ﬂ.

Note: if p = constant, F, = O for a closed body.

Scalar form of Green's Theorem:

.[ fnds= .\[ viav f = constant =Vf =0
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Pressure Transmission

Pascal's law: in a closed system, a pressure change
produced at one point in the system is transmitted
throughout the entire system.

Absolute Pressure, Gage Pressure, and Vacuum

Pg>0
Pa = atmospheric
> P, pressure =
Pa=P pg<O 101.325 kPa
Pa < Pa
pa = 0 = absolute
Z€Ero

For pa>pa, Py = Pa — Pa = gage pressure

FOr pa<Par  Pvac = -Pyg = Pa— Pa = Vacuum pressure



57:020 Fluid Mechanics Chapter 2
Professor Fred Stern  Fall 2006 5

Pressure Variation with Elevation

Basic Differential Equation

For astatic fluid, pressure varies only with elevation within
the fluid. This can be shown by consideration of
equilibrium of forces on afluid element

2 (g*?;%&\?ﬂ Ak

A2 o 1% order Taylor series
\/ ﬁ A o estimate for pressure
e e o | variation over dz

- Tﬂfh A

3

Newton's law (momentum principle) applied to a static
fluid

>F=ma=0 for astatic fluid

e, X =2F =2F,=0

>F,=0

pdxdy — (p+ %dz) dxdy — pgdxdydz = 0
op_

27 pg=-Y

Basic equation for pressure variation with elevation
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Z Fy — O Z FX - O
ap ap
pdxdz—(p+ a—dy)dxdz =0 pdydz—(p+ a—dx)dydz =0
y X

P_, P_,
oy OX

For astatic fluid, the pressure only varies with elevation z
and is constant in horizontal xy planes.

The basic equation for pressure variation with elevation can
be integrated depending on whether p = constant or

p =p(2), i.e., whether the fluid is incompressible (liquid or
low-speed gas) or compressible (high-speed gas) since

g ~ constant

Pressure Variation for a Uniform-Density Fluid

, % =—pg=—Y p = constant for liquid
g, T Ap =—YyAz

Z pz_plz_Y(Zz_Zl)

Alternate forms:
P, +7YZ, = P, +YZ, = constant
P+ YZ=constant  piezometric pressure
p(z=0)=0 gage

i.e, P=-—YZ increase linearly with depth
decrease linearly with height

p=-1Z

P +Zz=constant piezometric head

Y
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Qil with a specific gravity of 0.80 forms a layer
(.90 m deep in an open tank that is otherwise filled
with water, The total depth of water and oil is 3 m. What is the gage pressure at
the bottom of the tank?

p+7yz = constant
P, +YZ, =P, +7Z,
®' I02=I01+Y(21—Zz)

PrrEI TR ::“;:—":‘: """ T _T
é oil ® 080m P, =Py, =0
7.06 — T p, =7uAz=.8x9810x.9=7.06kPa

—: :r‘fa;gic 9 10m P; = p2+Ywater(Zz_Z3)
S =7060+9810x 2.1
27.7 > @14 —27.7kPa

Solution  First determine the pressure at the oil—water interface, staying within
the oil, and then calculate the pressure at the bottom.

&+Zg*"g'2'“+22
Y ¥

where p; is the pressure at free surface of ofl, z; is the elevation of free surface
of oil, p; Is the pressure at interface between oil and water, and z, is the elevation
at interface between oil and .water, For this example, p; = 0, ¥ = 0.80 X
9810 N/m’, z; == 3 m, and z; = 2.10 m. Therefore, |

P2 == 090 m X 0.80 X 9810 N/m* = 7.06 kPa gage
Now obtain p; from

.’E.?..
Y
where p; has already been calculated and y = 9810 N/m’.

3
“+“sz£"+23

7060
pied) s, B = i
fea 98;9(98?0 2.10) 27.7 kPa gage ~y
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Pressure Variation for Compressible Fluids:

Basic equation for pressure variation with elevation

% =—=Y=-Y(P.2) =pg

Z

Pressure variation equation can be integrated for y(p,z)
known. For example, here we solve for the pressure in the
atmosphere assuming p(p,T) given from ideal gas law, T(z)

known, and g # g(2).

p=pRT R = gas constant = 287 Jkg -°K  dry air
p,T in absolute scale

dp __P9

dz RT

dp -g dz

which can be integrated for T(z) known
p RT(2
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Pressure Variation in the Troposphere

T=T,—0o(z—2) linear decrease

To=T(2) where p = py(z,) known
o = lapse rate = 6.5 °K/km

d__ 9 dz 7=T,-o(z-2,)
p  R[T,—-a(z-2z,)] dz'= adz

Inp:a%ln[To —o(z—-z,)] + constant
use reference condition Zo = garth surface

In Py = i | nTO + constant Po = 101.3 kPa

oR
T =15°C
solve for constant o = 6.5 °K/km
In P _ g |nTo —OC(Z—ZO)
P, OR T,

P _ TO—O((Z—ZO) 9o
Po T

o

I.e., p decreases for increasing z
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Pressure Variation in the Stratosphere

T=T.=-55°C
dp__gdz
P R T

g

Inp=———2z + constant
RT,

use reference condition to find constant

P
Po

_ e—(z—zo)g/ RT,

P=p,exp[—(z-2,)9/RT]

I.e., p decreases exponentially for increasing z.

Pr essure M easur ements

Pressure is an important variable in fluid mechanics and
many instruments have been devised for its measurement.
Many devices are based on hydrostatics such as barometers
and manometers, i.e., determine pressure through
measurement of a column (or columns) of aliquid using the
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pressure variation with elevation equation for an
incompressible fluid.

Differential L i — -

manometer ?j i
[ Ah

More modern devices include Bourdon-Tube Gage
(mechanical device based on deflection of a spring) and
pressure transducers (based on deflection of aflexible
diaphragm/membrane). The deflection can be monitored
by a strain gage such that voltage output is e Ap across
diaphragm, which enables el ectronic data acquisition with
computers.

Bourdon-Tube
Gage

In this course we will use both manometers and pressure
transducersin EFD labs 2 and 3.
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Manometry
1. Barometer
Pv * YHgh = Patm
Patm = Yrgh pv~ O i.e., vapor pressure Hg
nearly zero at normal T
h~76cm

Pam ~ 101 kPa (or 14.6 psia)

Note: Pam 1S relative to absolute zero, i.e., absolute
pressure. Pam = Pam(lOcation, weather)

Consider why water barometer isimpractical
YhgNhg = Vh,0MH,0

YHg

Nyo= hyg = Spghng =13.6x76 =1033.6cm = 341t.

TH,0



57:020 Fluid Mechanics Chapter 2
Professor Fred Stern  Fall 2006 13

2. Piezometer Datm

Pam + YN = Ppipe = P absolute
p=yh gage

Simple but impractical for large p and vacuum pressures
(i.€., Paps < Pam)- Also for small p and small d, dueto large
surface tension effects, could be corrected using
Ah=4gc/yd, but accuracy may be problemif p/y[J Ah_

3. U-tube or differential manometer

Y

¢ | patm
N _ ¥,,(manometer liquid)
P+ YmAN =1 = P P1 = Pam
Pa = YmAh =71 gage
= Yw[SmAh - S 1]

for gases S << S, and can be neglected, i.e., can neglect Ap
In gas compared to Ap in liquid in determining ps = Ppipe-
Example;



YAH
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Air at 20 °C isin pipe with awater manometer. For given
conditions compute gage pressure in pipe.

Yar 1 =140cm

Ah=70cm

Ps=7? gage(i.e, p.=0)

\J.\;u Pressure same at 2& 3 since
same elevation & Pascal’s

pi+ yAh=ps step-by-step method | [aw: in closed system

P3 - Yairl = Pa pressure change produce at
one part transmitted
throughout entire system

P1 + YAh - v4:1 = g compl ete circurt method
YAh-val =ps  gage

Twaer(20°C) = 9790 N/m> = p3 = yAh = 6853 Pa[N/m’]
Yar = PY

pabs \
or
o= P _ (Ps+Pan) _6853+101300_, pop sl O
RT R(°C+273) 287(20+273) e
°K
Yar = 1.286 x 9.81m/s* = 12.62 N/m® 1 agle

note Yair << Ywata
Pa=P3-Yarl =6853—12.62x1.4=6835Pa
17.668
If neglect effect of air column ps = 6853 Pa
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A differential manometer determines the differencein
pressures at two points Mand @ when the actual pressure
at anv point in the svstem cannot be determined.

&

hk

p1+”)(f él—ymAh—yf (éz—Ah) = p2

[&wlj—(&wzj:(y—m— jAh
Vs )i M

_

differencein piezometric head

*if fluidisagas v <<7vym: pP1—P2=YmAD

*if fluidisliquid & pipe horizontal ¢, = £:
Pr—P2 = (Ym- 1) AD
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Hydr ostatic For ces on Plane Surfaces

For astatic fluid, the shear stressis zero and the only stress
Isthe normal stress, i.e., pressurep. Recall that pisa
scalar, which when in contact with a solid surface exerts a
normal force towards the surface.

¢ ‘fr '—“*‘F‘LJ\Q’

R "

Fp = _I deA
A

For a plane surface n = constant such that we can separately
consider the magnitude and line of action of F,.

Fp|=F=pdA
A

Line of action is towards and normal to A through the
center of pressure (Xep, Yep)-
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Unless otherwise stated, throughout the chapter assume pam,
acts at liquid surface. Also, we will use gage pressure so
that p = 0 at the liquid surface.

Horizontal Surfaces

horizontal surface with area A

i PI1T1T 117 p=constant

F=[pdA =pA

Line of action is through centroid of A,
1.€., (Xeps Yep) = (x, y)
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Inclined Surfaces
9| Tz

dp _
dZ - Y e e . e
Ap=—-YyAz

(,<A B
(X,y) = centroid of A
FIGURE 3.10
coi i e (Xeo,Yeo) = Center of pressure
Distribution of

hydrostatic pressure on o View (-0
plane surfuce.

y

Free surface

ro— | k e
' 0\~
| -

Resultant

, = ]
force:
F= Peg 1 ) \\
3 \
* \\ N
% - b
\ \
pT N ‘
% %

P _ _h
/’// ! sin
/ /,,
.. g
<~ Side view
dA =dx dy

& Plan view of arbitrary plane surface
dF = pdA =y sin o dA _
- — vy and sin o. are constants
P

F=JpdA =ysina[ydA o1
/{p L ,{y Y—KJYdA

H_J

YA
1% moment of area
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F=ysinayA

R e
p= pressure at centroid of A

F=pA

Magnitude of resultant hydrostatic force on plane surfaceis
product of pressure at centroid of area and area of surface.

Center of Pressure

Center of pressureisin genera below centroid since
pressure increases with depth. Center of pressureis
determined by equating the moments of the resultant and
distributed forces about any arbitrary axis.

Determine y,, by taking moments about horizontal axis 0-0

Yool = [ydF

A

/{ypdA
[y(yysino)dA
A
= ysinoy“dA
&

|, = 2" moment of area about 0-0
= moment of inertia
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transfer equation: 1, =y A+1

| = moment of inertiawith respect to horizontal
centroidal axis

YeoF = vSina(y A+1)
—_ . _2 —_
ycp(pA) =ysno(y A+l)

Y YSINOYA = vsina(y°A +1)

YepiS below centroid by 1/yA
Yoo — Y forlarge y

For po# 0, y must be measured from an equivalent free
surface located po/y above y.
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Determine X, by taking moment about y axis

XpF = [xdF
A
[ xpdA
A

X (YySiNGA) = [X(yysino)dA
A

X YA = [XydA
A

|,y = product of inertia

= Iy +XyA transfer equation

chglA = Ixy + QS/A

X —Iﬂ+§
cp yA

For plane surfaces with symmetry about an axis normal to
O'O, IXy :O and ch = X.
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T = 5
2 A= ba A=aR
12 1
@—ax | he = g b i=1 xk!
2 R .
¥ ' e = 734 fye =0
L—& 1. 2. ]
. K F J'”_ =0
la) Rectangle () Circle
Ca x”’ e _ af
A= i =% T
I, = 0.1098R* [ i = ";*? th - 2)
" (1]
I, =0.39278* O
Cﬁ_‘ @ = L i
ar ! 0 ] -‘f (] 3
" L bed |
3
I= - s - -
[} Semicircie () Triangle
- ER
casinderr
I.=1_=0.054888"
I =-0.016478°
L 5
¥ 5 A=0bL A = 7R2
3
4¢A\'——— Loy BL I _ =Rt
12 rX 4
L
: 5 I,=0 Iiy=10
| }
t |
b b \
2 2
(a) ()
]
y bL
_b 2
J\ o A7 A=IR
-“;’ > g |
_bL? [ L, = 0.10976R*
".\.I
X X 36
o) ly=0
]: L b(h—2s)L2 4
ky = = |/
; - 72 t\ 4
| h 4 b ‘ R } R 3m
2 | 2 |
(c) (d)
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Hydrostatic For ces on Curved Surfaces

zA Free surface
= : Ate
e
T
Al DB
X p=1h
| F=—[pndA h = distance below
% A
free surface
Horizontal Components (x and y components)
F. =F-i=—[pn-idA
A %(_J
\

dA, = projection of ndA onto
== Af PAA  plane L to x-direction

dA, =n-]dA

= projection ndA
onto plane L to
y-direction

Therefore, the horizontal components can be determined by
some methods devel oped for submerged plane surfaces.

The horizontal component of force acting on a curved
surface is equal to the force acting on a vertical projection
of that surface including both magnitude and line of action.
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Vertical Components

2z b z
=— [pdA, p=1h
h=distance

below free
surface

v
_/ 3 =y [hdA, =WV
A

z

= weight of
fluid above
surface A

The vertical component of force acting on a curved surface
Is equal to the net weight of the column of fluid above the
curved surface with line of action through the centroid of
that fluid volume.
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- Example: Drum Gate
b T 4

Pressure Diagram

p = vh = yR(1-cosH)
n——smel +cosOk

dA=/ Rdo

F_—ij(l cose)( smel+cosek)€Rde
-~ ~ ——
p n dA

Fi=F =+ Tjt(l cos0)sin6do

o

L
= 2y/R*?
0
= (YR)(2R ¥ ) = same force as that on projection of
p A area onto vertical plane

T
F, =—y/R?[(1- cos8) cos8do
0

:—YfRz e_g_smze
2 4

= v/ RZ{— coso +%c0529

0

I nR?
—WRZE—W[ j—v’v‘

2
= net weight of water above surface
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Buoyancy

Archimedes Principle

AV

Fe = Fo—Fu

fluid weight above Surface 2 (ABC)
— fluid weight above Surface 1 (ADC)

= fluid weight equivalent to body volume M
Fs = pg¥ M = submerged volume

Line of action is through centroid of M = center of
buoyancy

Net Horizontal forces are zero since
Feap = Fecp
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Hydrometry

A hydrometer uses the buoyancy principle to determine
specific weights of liquids.

S= ?S‘/Qf‘w : xw’*hc@.*ua :

A2 Svess, Sl
s, af Sl dn g W"'—nb‘»

fﬁ_; ,W.QQ ] ‘ ?Fg‘ 8‘.9#
| w

Wakeo K gdeckark e SV W
T*“ .\_‘C’/x\“’ W= €6"’&N40 i "‘

S= X“'/k‘w

W =mg =¥ = Sy M

W = %M o = Spu(Mo— AV) = SyufMo — aAR)

Vi \M
a = Cross section area stem
MJ/S=M,—aAh aAh =M, —\,/S
Ah = i : (1—% =Ah(S)
a S
Ah = %’%_1 calibrate scale using fluids of known S

)VL

—_ o

 V,—aAh
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Example (apparent weight)

King Hero ordered a new crown to be made from pure
gold. When he received the crown he suspected that other
metals had been used in its construction. Archimedes
discovered that the crown required aforce of 4.7# to
suspend it when immersed in water, and that it displaced
18.9in° of water. He concluded that the crown was not
pure gold. Do you agree?

o W™ ""/MM&X\-R'
= |

7 7 7 7

W=yM,  Fy =1

W +yw\7‘
or Yc= —a+yw =—2 \
4.7+62.4x18.9/1728
= = 4921 =
Te 18.9/1728 Pl

= pc = 15.3 dugg/ft®

~ psea @Nd Since gold is heavier than steel the crown
can not be pure gold
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Stability of | mmer sed and Floating Bodies

Here we'll consider transverse stability. In actual
applications both transverse and longitudinal stability are
important.

|mmersed Bodies

Center of
Duoyancy

FIGURE 3.15
Conditions of stability
Weight

for immersed bodies.
faj Stable. (b} Neutral.

fc) Unstable. {a} (b o)

Static equilibrium requires: > F, =0 and >M =0

>.M =0 requires that the centers of gravity and buoyancy
coincide, i.e.,, C = G and body is neutrally stable

If C isabove G, then the body is stable (righting moment
when heeled)

If G isabove C, then the body is unstable (heeling moment
when heel ed)
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Floating Bodies

For afloating body the situation is dlightly more
complicated since the center of buoyancy will generally
shift when the body is rotated depending upon the shape of
the body and the position in which it is floating.

Positive GM Negative GM

The center of buoyancy (centroid of the displaced volume)
shifts laterally to the right for the case shown because part
of the original buoyant volume AOB is transferred to a new
buoyant volume EOD.

The point of intersection of the lines of action of the
buoyant force before and after hedl is called the metacenter
M and the distance GM is called the metacentric height. If
GM is positive, that is, if M isabove G, thenthe shipis
stable; however, if GM is negative, the ship is unstable.
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Floating Bodies
E—‘:‘;
o. = small heel angle S 2SN,
x =CC’ = lateral displacement e/ *
of C TR F e

C = center of buoyancy 2

i.e., centroid of displaced M

volume ¥
J— ’ \%
Solve for GM: find x using x
(1) basic definition for centroid of \/; and ]
(2) trigonometry ®
Fig. 3.17
(1) Basic definition of centroid of volume M
XV = [xdV =¥ x;AV.  moment about centerplane
XV = moment V before heel — moment of Maos
~ —~— — + moment of Meop

= 0 due to symmetry of
original V about y axis
I.e., ship centerplane

XV=— [ (=X)dV-+ [ Xxd¥ tan o = y/x
AOB EOD
dV = ydA = x tan oo dA
XM= | x2tanodA + [ x2 tanadA
AOB EOD
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XV = tano| x*dA
ship waterplane area
— ~ _/

moment of inertia of ship waterplane
about z axisO-0; i.e,, loo

loo = moment of inertia of waterplane
area about centerplane axis

(2) Trigonometry
cC =x =00 _ o\ iang
CM = |oo/¥
GM =CM -CG
GM = Iﬂ—CG
V
GM >0 Stable

GM <0 Unstable
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Fluidsin Rigid-Body M otion

For fluids in motion, the pressure variation is no longer
hydrostatic and is determined from application of Newton's
2" aw to afluid element.

- x
Zin Taz Tay %’ %ﬁ o
p g 3 -

(P Tr) e e o

Vg = - ¢¥ah

Tij = Viscous stresses net surface force in X direction
p = pressure

W = weight (body force)

OX oX dy 0z

Ma= inertiaforce X, =(_ 8p+ OTxx + ITyx +3sz
n

_/

b

Newton’s 2™ Law pressure Viscous

v

Ma=2>F=Fg+Fs
per unit volume (= M) pa=f,+f;

The acceleration of fluid particle
a= % :a_\—/+MVM
Dt ot

f, = body force = — pgR
fs=surfaceforce=f, +f,
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f, = surface forcedueto p =-Vp
f surface force due to viscous stresses Tj;

Neglected in this chapter and
pa=1 +1 7f’V included later in Chapter 6
— =P /=Y \Wwhen derivi ng complete
Navier-Stokes equations

pa=—-pgk—-Vp
inertiaforce = body forcedue + surfaceforcedueto
to gravity pressure gradients

Where for general fluid motion, i.e. relative motion
between fluid particles:

a:D\l: v +V-VW _ .
~— Dt QL = substantial derivative
local acceleration
acceleration
Du__dp
P Dt oX
Ju du du au _Jp
pl —+U—+V—+W —
at oxX oy Jz oX
Dv 0
Y. _oP
Dt oy
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. Dw op 0 Note: for V. =0
% ot~ P 0z az(pﬂz) Vp = —pgk
p{aw+uaw+vaw+waw}:—i(p+7/z) ®_P_,
ot  9x 9y 0z 0z ox ady
op B
g——pg——v

But in this chapter rigid body motion, i.e., no
relative motion between fluid particles

pa=-V(p+vz) Euler'sequation forinviscid flow

VV=0 Continuity equation for

incompressible flow (See Chapter 6)

4 equations in four unknownsV and p

For rigid body trandation: a= aj + az‘z
For rigid body rotating; a=-rQ°¢

If a=0, the motion equation reduces to hydrostatic

eguation:
p_op_j,

oxX oy
9 _

0z 4
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Examples of Pressure Variation From Acceleration

Uniform I:inear Acceleration:
pa=—-pgk—-Vp
Vp=—pla+gk)=plg-a)  g=-gk

sz—p[axf+(g+az)RJ a=a,i+a,k

op op

= _pa £ =_p(g+a
o P oo=plg+a,)
p_

v P

1. &,<0 pincreasein +x
2.8,>0 p decreasein +x
ap_

- P(a+a,)

1.8,>0 p decreasein +z

2.3,<0 and [&,|< 9 pdecreasein +z but Sower than g

3.8,<0and|a|>9 pincreasein +z
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S= unit vector in direction of Vp
=Vp/|Vpl

_ —lai+(g+a,)k]

- [ +ora?]”

N = unit vector in direction of p =

~ Y
= 85X | ijkijk
J jkij T~ tovp
—ak+(a+a)i by definition lines
= ASACRCY > of constant p are
[a>2< +(9+az)2]1 normal to Vp

0 =tan" a./ (g + &) = angle between f and x

d N /2
d—p:Vp'SZP[a>2<+(g+az)2]l > pg
S X e J

p=pGs+constant = Pyage = PGS
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Rigid Body Rotation:

Consider acylindrical tank of liquid rotating at a constant
rate QQ = Qk
_ j}

AN —/%%f‘ o 07 * (Lﬁt"j\ ververx

T o
/%* a=Qx(Qxr,) -

— 9% centripetal acceleration

— _ rO22
(12 T

Sl —esatin, Livd

Ve Ucle =vn Ss = —_

r
d. 10. d.
Vp=p(g—a V=—€+-—€+_—¢€
P=p(g A_) o ' roe 0 9z °
= —pgk +prQ’g, grad in cylindrical coordinates
. ap 2 ap ap
e, — =prQ == - =0
or P oz 7Y 20

C (r) pr&ssure distribution is hydrostatic in z direction
and p= Er2£22 +f(2)+c
2 Pz =-Pg
p=-pgz+C(r) +c

2
p= BrZQ2 —pgz + constant P, z—\z/— = constant
Y g

V =rQ
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The constant is determined by specifying the pressure at
one point; say, p=pPo at (r, z) = (0, 0)

1
p=Po—pgz+ SrQp
Note: pressureislinear in z and parabolicinr
Curves of constant pressure are given by
r2Q?

z=P"P, =a+br?
PY 29

which are paraboloids of revolution, concave upward, with
their minimum point on the axis of rotation

Free surface is found by requiring volume of liquid to be
constant (before and after rotation)

The unit vector inthedirectionof Vpis =2

& —ngA<+prQZé,r1/2 T
(pg)+pra?f | T
pVE
<
dz g A
tanaza:—? slopeof S
r

— _/
~—
2

l.e, r= Clexp(— E} eguation of Vp surfaces
g
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Fig. 2.23 Experimental demonstration with buoyant streamers of the fluid force field in
rigid-body rotation: (top) fluid at rest (streamers hang vertically upward); (bottom) rigid-
body rotation (streamers are aligned with the direction of maximum pressure gradient).
(From Ref. 5. Courtesy of R. Ian Fletcher.)

94 PRESSURE DISTRIBUTION IN A FLUID



