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Chapter 2:  Pressure and Fluid Statics 
 

Pressure 
 

For a static fluid, the only stress is the normal stress since 

by definition a fluid subjected to a shear stress must deform 

and undergo motion.  Normal stresses are referred to as 

pressure p. 

 

For the general case, the stress on a fluid element or at a 

point is a tensor 

 

 

 

For a static fluid, 

 ij= 0  ij  shear stresses = 0 

 

  ii= p = xx= yy= zz i = j  normal stresses =-p 

 

Also shows that p is isotropic, one value at a point which is 

independent of direction, a scalar. 

 

ij = stress tensor 

 

    =  xx xy xz 

  yx yy yz 

  zx zy zz 

i = face 

j = direction 
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x z 

Definition of Pressure: 

 

A 0

F dF
p

A dAlim
 


 


    N/m2 = Pa (Pascal) 

F = normal force acting over A 

 

As already noted, p is a scalar, which can be easily 

demonstrated by considering the equilibrium of forces on a 

wedge-shaped fluid element 

 

 

Geometry 

A =   y 

x =  cos 

z =  sin 

 

 

 

 

Fx = 0 

 pnA sin - pxA sin = 0 

 pn = px 

 

 

 Fz = 0 

 -pnA cos + pzA cos - W = 0 

 y)sin)(cos(
2

W 


   

W = mg 

     = Vg 

     = V 

V = ½ xzy 

 

n z

2

n z

p ycos p ycos

cos sin y 0
2

ycos

p p sin 0
2
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   p pn z




2
0sin

 

 p p forn z  0 
 i.e.,    pn = px = py = pz 

 

p is single valued at a point and independent of direction.  

 

 

A body/surface in contact with a static fluid experiences a 

force due to p 

 


BS

p dAnpF  

 

 

 

 

 

 

 

 

 

 

 

Note:  if p = constant, Fp = 0 for a closed body. 

 

Scalar form of Green's Theorem: 

 
s

f nds fd


      f = constant f = 0 
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Pressure Transmission 

 

Pascal's law: in a closed system, a pressure change 

produced at one point in the system is transmitted 

throughout the entire system. 

 

Absolute Pressure, Gage Pressure, and Vacuum 

 

 

 

 

 

 

 

 

 

 

 

 

 

For pA>pa, pg = pA – pa = gage pressure  
 

For pA<pa,  pvac = -pg = pa – pA = vacuum pressure  
 

pA < pa 

pg < 0 

pg > 0 

pA > pa 

pa = atmospheric  

        pressure =  

        101.325 kPa 

pA = 0 = absolute  

              zero 



57:020 Fluid Mechanics                                                                 Chapter 2 

Professor Fred Stern    Fall 2012 
5 

Pressure Variation with Elevation 
 

Basic Differential Equation 

 

For a static fluid, pressure varies only with elevation within 

the fluid.  This can be shown by consideration of 

equilibrium of forces on a fluid element 

 

 

 

 

 

 

Newton's law (momentum principle) applied to a static 

fluid 

 F = ma = 0  for a static fluid 

 i.e., Fx = Fy = Fz = 0 

 

 Fz = 0 

 
pdxdy p

p

z
dz dxdy gdxdydz   ( )




 0

  

 




 

p

z
g   

  
Basic equation for pressure variation with elevation 

1st order Taylor series 

estimate for pressure 

variation over dz 
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0
y

p

0dxdz)dy
y

p
p(pdxdz

0Fy














 

0
x

p

0dydz)dx
x

p
p(pdydz

0Fx














 

 

For a static fluid, the pressure only varies with elevation z 

and is constant in horizontal xy planes. 

 

The basic equation for pressure variation with elevation can 

be integrated depending on whether  = constant or             

= (z), i.e., whether the fluid is incompressible (liquid or 

low-speed gas) or compressible (high-speed gas) since  

g  constant 

 

Pressure Variation for a Uniform-Density Fluid 

 




 

p

z
g   

 
p z    

 2 1 2 1p p z z     

Alternate forms: 

 1 1 2 2p z p z       

 p z    

  p z 0 0   

   i.e., p z   

 

 = constant for liquid 

constant 

constant       piezometric pressure 

gage 

constant     piezometric head 
p

z 
  

increase linearly with depth  

decrease linearly with height 

Z 

p z   

g 



57:020 Fluid Mechanics                                                                 Chapter 2 

Professor Fred Stern    Fall 2012 
7 

7.06 

27.7 

 

 

1 1 2 2

2 1 1 2

1 atm

2 oil

3 2 water 2 3

p z cons tan t

p z p z

p p z z

p p 0

p z .8 9810 .9 7.06kPa

p p z z

7060 9810 2.1

27.7kPa
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Pressure Variation for Compressible Fluids: 

 

Basic equation for pressure variation with elevation 
 

( , )
dp

p z g
dz

         

Pressure variation equation can be integrated for (p,z) 

known.  For example, here we solve for the pressure in the 

atmosphere assuming (p,T) given from ideal gas law, T(z) 

known, and g  g(z). 

 

p = RT    R = gas constant = 287 J/kg K 

     p,T in absolute scale 

 

RT

pg

dz

dp
      

 

)z(T

dz

R

g

p

dp 
   which can be integrated for T(z) known 

 

 

 

 

dry air 
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zo = earth surface  

    = 0 

 

po = 101.3 kPa 

 

T = 15C 

 

 = 6.5 K/km 

Pressure Variation in the Troposphere 

 

  T = To  (z – zo)  linear decrease 

 

  To = T(zo) where p = po(zo) known 

   = lapse rate = 6.5 K/km 

 

)]zz(T[

dz

R

g

p

dp

oo 
   

dz'dz

)zz(T'z oo




 

 

constant)]zz(Tln[
R

g
pln oo 


  

 

use reference condition 

 

constantTln
R

g
pln oo 


  

 

solve for constant 

 

Rg

o

oo

o

o

oo

o

T

)zz(T

p

p

T

)zz(T
ln

R

g

p

p
ln










 







 

 

i.e., p decreases for increasing z 
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Pressure Variation in the Stratosphere 

 

  T = Ts = 55C 

 

  

dp

p

g

R

dz

Ts

 

 

  constantz
RT

g
pln

s

   

 

 

use reference condition to find constant 

 

 

]RT/g)zz(exp[pp

e
p

p

soo

RT/g)zz(

o

s0






 

 

i.e., p decreases exponentially for increasing z. 

 

 

 

Pressure Measurements 
 

Pressure is an important variable in fluid mechanics and 

many instruments have been devised for its measurement.  

Many devices are based on hydrostatics such as barometers 

and manometers, i.e., determine pressure through 

measurement of a column (or columns) of a liquid using the 
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pressure variation with elevation equation for an 

incompressible fluid. 

 

 

 

 

 

More modern devices include Bourdon-Tube Gage 

(mechanical device based on deflection of a spring) and 

pressure transducers (based on deflection of a flexible 

diaphragm/membrane).  The deflection can be monitored 

by a strain gage such that voltage output is  p across 

diaphragm, which enables electronic data acquisition with 

computers. 

 

 

 

 

 

 

 

In this course we will use both manometers and pressure 

transducers in EFD labs 2 and 3. 

Differential 

manometer 

Bourdon-Tube 

Gage 
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Manometry 

 

1. Barometer 

 

 pv + Hgh = patm 

 

 patm = Hgh  pv  0  i.e., vapor pressure Hg  

nearly zero at normal T 

  h  76 cm 

  patm  101 kPa (or 14.6 psia)  

 

 

Note: patm is relative to absolute zero, i.e., absolute 

pressure.  patm = patm(location, weather) 

 

 

Consider why water barometer is impractical 
 OHOHHgHg 22

hh    

 

.ft34cm6.1033766.13hShh HgHgHg

OH

Hg

OH

2

2
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patm 

2. Piezometer 

 

 

 

 

 

 

patm + h = ppipe = p  absolute 

  

 p = h   gage 

 

Simple but impractical for large p and vacuum pressures 

(i.e., pabs < patm). Also for small p and small d, due to large 

surface tension effects, could be corrected using 

h 4 d    , but accuracy may be problem if p/  h. 

 

3. U-tube or differential manometer 

 

 

 

 

 

 

 

p1 + mh  l = p4   p1 = patm 

p4 = mh  l   gage 

     = w[Smh  S l] 

for gases S << Sm and can be neglected, i.e., can neglect p 

in gas compared to p in liquid in determining p4 = ppipe. 

Example: 

patm 
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Air at 20 C is in pipe with a water manometer.  For given 

conditions compute gage pressure in pipe. 

     

      l = 140 cm 

      h = 70 cm 

   

      p4 = ?    gage (i.e., p1 = 0) 

 

 

p1 + h = p3 step-by-step method 

p3 - airl = p4  

 

 

p1 + h - airl = p4  complete circuit method 

 h - airl = p4  gage 

 

water(20C) = 9790 N/m3      p3 = h = 6853 Pa [N/m2] 

air = g 
     pabs 

 
 

3atm3 m/kg286.1
)27320(287

1013006853

273CR

pp

RT

p










  

     K 

air = 1.286  9.81m/s2 = 12.62 N/m3  

 

note  air << water 

p4 = p3 - airl  = 6853 – 12.62  1.4 = 6835 Pa 

      17.668 

if neglect effect of air column  p4 = 6853 Pa 

or 

could 

use 

Table 

A.3 

h 

air 

Pressure same at 2&3 since 

same elevation & Pascal’s 

law: in closed system 

pressure change produce at 

one part transmitted 

throughout entire system 
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A differential manometer determines the difference in 

pressures at two points ①and ② when the actual pressure 

at any point in the system cannot be determined. 

 

 

 

 

 

 

 

 

 

 

 
p h ( h) pm1 1 2 2f f
p p ( ) ( ) hm1 2 2 1f f

     

      
 

 

h1
pp

f

m
2

f

2
1

f

1 



































  

difference in piezometric head 

 

if fluid is a gas  f << m :  p1 – p2 = mh 

 

if fluid is liquid & pipe horizontal 
1
 = 

2
:  

p1 – p2 = (m - f) h  
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Hydrostatic Forces on Plane Surfaces 
 

For a static fluid, the shear stress is zero and the only stress 

is the normal stress, i.e., pressure p.  Recall that p is a 

scalar, which when in contact with a solid surface exerts a 

normal force towards the surface. 

 

 

 

 

 

 


A

p dAnpF  

 

 

 

 

 

 

For a plane surface n = constant such that we can separately 

consider the magnitude and line of action of Fp. 

 


A

p pdAFF  

 

Line of action is towards and normal to A through the 

center of pressure (xcp, ycp). 
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p = constant 

Unless otherwise stated, throughout the chapter assume patm 

acts at liquid surface.  Also, we will use gage pressure so 

that p = 0 at the liquid surface. 

 

 

Horizontal Surfaces 

  

 

    F 

 

  pApdAF  

 

Line of action is through centroid of A,  

i.e., (xcp, ycp) =  y,x  

 

horizontal surface with area A 
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Inclined Surfaces 

 

 

 

 

 

 

 

 

 

 

dF = pdA = y sin  dA 

 

 

 
AA

ydAsinpdAF  

     

 

 

 and sin  are constants 

 

 ydA
A

1
y  

 

1st moment of area 

g z 

(xcp,ycp) = center of pressure 

(x,y) = centroid of A 

y 

F 

x 

dp

dz

p z

 

  

 

p 

Ay  
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AysinF   

 

 

 

 

Magnitude of resultant hydrostatic force on plane surface is 

product of pressure at centroid of area and area of surface. 

 

Center of Pressure 

 

Center of pressure is in general below centroid since 

pressure increases with depth.  Center of pressure is 

determined by equating the moments of the resultant and 

distributed forces about any arbitrary axis. 

 

 

Determine ycp by taking moments about horizontal axis 0-0 

 

ycpF   =  
A

ydF 

  
A

pdAy  

 
A

dA)siny(y  

     = 
A

2dAysin  

    

     Io = 2nd moment of area about 0-0 

      = moment of inertia 

ApF   

p = pressure at centroid of A 
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transfer equation: IAyI
2

o   

 

=  moment of inertia with respect to horizontal  

centroidal axis 

 

)IAy(sinAysiny

)IAy(sin)Ap(y

)IAy(sinFy

2

cp

2

cp

2

cp







 

 IAyAyy
2

cp   

 

   

 

ycp is below centroid by Ay/I  

 

ycp  y  for large y  

 

For po  0, y must be measured from an equivalent free 

surface located po/ above y . 

cp

I
y y

yA
   

I
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Determine xcp by taking moment about y axis 

 

 xcpF    = 
A

xdF  

   
A

xpdA  

 

 
A

cp dA)siny(x)Asiny(x  

 

 
A

cp xydAAyx  

    = AyxIxy   transfer equation 

 

 AyxIAyx xycp   

  

   

 

 

For plane surfaces with symmetry about an axis normal to 

0-0, 0Ixy   and xcp = x . 

 

Ixy = product of inertia 

x
Ay

I
x

xy

cp   
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Hydrostatic Forces on Curved Surfaces 
 

 

 

 

 

Horizontal Components  (x and y components) 

  
A

x dAînpîFF  

 
   

xA
xpdA  

 

 
yA

yy pdAĵFF  dAĵndAy   

       = projection ndA 

          onto plane  to  

   y-direction 

    

Therefore, the horizontal components can be determined by 

some methods developed for submerged plane surfaces. 

 

The horizontal component of force acting on a curved 

surface is equal to the force acting on a vertical projection 

of that surface including both magnitude and line of action. 

Free surface 


A

dAnpF  

p = h 

 

h = distance below 

free surface 

dAx = projection of ndA onto 

plane  to x-direction 
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Vertical Components 
 

 

 

     
A

z dAk̂npk̂FF  

      = 
zA

zpdA  p = h 

         h=distance  

below free  

surface 

 

      =  
zA

z VhdA  

= weight of  

fluid above  

surface A 

 

 

The vertical component of force acting on a curved surface 

is equal to the net weight of the column of fluid above the 

curved surface with line of action through the centroid of 

that fluid volume. 
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Example:  Drum Gate 

 

 

 

 

 

Pressure Diagram 

p = h = R(1-cos) 

k̂cosîsinn   

dA =  Rd 

 


0

Rd)k̂cosîsin)(cos1(RF   

    p     n    dA 

 


0

2
x dsin)cos1(RFîF   

 = 2

0

2 R22cos
4

1
cosR  








 

 = (R)(2R )  same force as that on projection of  

     p       A       area onto vertical plane 

 


0

2
z dcos)cos1(RF   

     =




 







0

2

4

2sin

2
sinR  

     = V
2

R

2
R

2
2 












 



   

      net weight of water above surface 
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Buoyancy 
 

Archimedes Principle 

 

 

FB  =  Fv2 – Fv1 

    

      = fluid weight above Surface 2 (ABC)  

– fluid weight above Surface 1 (ADC) 

 

      = fluid weight equivalent to body volume V 

 

FB = gV    V = submerged volume 

 

Line of action is through centroid of V = center of 

buoyancy 

 

Net Horizontal forces are zero since 

  FBAD = FBCD 
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V 

Hydrometry 

 

A hydrometer uses the buoyancy principle to determine 

specific weights of liquids. 

 

 

 

 

 

 

 

 

 

 

 

W = mg = fV = SwV 

 

W = wV o = Sw(Vo  V) = Sw(Vo  ah) 

       f 

      a = cross section area stem 

 Vo/S = Vo  ah   ah = Vo – Vo/S 

       h = 









S

1
1

a

Vo =h(S) 

 

     h = 
S

1S

a

Vo 
  calibrate scale using fluids of known S 

 

     S = 
haV

V

0

o


 

 

Stem 

Bulb 
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Example (apparent weight) 

 

King Hero ordered a new crown to be made from pure 

gold.  When he received the crown he suspected that other 

metals had been used in its construction.  Archimedes 

discovered that the crown required a force of 4.7# to 

suspend it when immersed in water, and that it displaced 

18.9 in3 of water.  He concluded that the crown was not 

pure gold.  Do you agree? 

 

 

 

 

 

 

 

 

Fvert = 0 = Wa + Fb – W = 0  Wa = W – Fb = (c - w)V 

       W=cV,   Fb = wV  

or  c = 
V

VW

V

W wa
w

a 
  

 

g1.492
1728/9.18

1728/9.184.627.4
cc 


  

 

   c = 15.3 slugs/ft3 

 

 steel  and since gold is heavier than steel the crown  

can not be pure gold 
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Stability of Immersed and Floating Bodies 
 

Here we’ll consider transverse stability.  In actual 

applications both transverse and longitudinal stability are 

important. 

 

Immersed Bodies 

 

Static equilibrium requires:    0Mand0Fv  

 

M = 0 requires that the centers of gravity and buoyancy 

coincide, i.e., C = G and body is neutrally stable 

 

If C is above G, then the body is stable (righting moment 

when heeled) 

 

If G is above C, then the body is unstable (heeling moment 

when heeled) 
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Floating Bodies 

 

For a floating body the situation is slightly more 

complicated since the center of buoyancy will generally 

shift when the body is rotated depending upon the shape of 

the body and the position in which it is floating. 

 

     Positive GM      Negative GM  

 

The center of buoyancy (centroid of the displaced volume) 

shifts laterally to the right for the case shown because part 

of the original buoyant volume AOB is transferred to a new 

buoyant volume EOD. 

 

The point of intersection of the lines of action of the 

buoyant force before and after heel is called the metacenter 

M and the distance GM is called the metacentric height.  If 

GM is positive, that is, if M is above G, then the ship is 

stable; however, if GM is negative, the ship is unstable. 
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Floating Bodies 

 

 = small heel angle 

CCx   = lateral displacement 

  of C 

C = center of buoyancy 

i.e., centroid of displaced  

volume V 

 

Solve for GM:  find x  using 

(1) basic definition for centroid of V; and 

(2) trigonometry 
         Fig. 3.17 

 

(1) Basic definition of centroid of volume V 

       

   ii VxVxdVx  moment about centerplane 

 

Vx  = moment V before heel – moment of VAOB  

+ moment of VEOD 

  = 0 due to symmetry of  

   original V about y axis 

   i.e., ship centerplane 

  

 

xV ( x)dV xdV
AOB EOD

      tan  = y/x 

       dV = ydA = x tan  dA 
2 2xV x tan dA x tan dA

AOB EOD
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 dAxtanVx 2  

  ship waterplane area 

 

   moment of inertia of ship waterplane  

   about z axis O-O; i.e., IOO 

 

IOO = moment of inertia of waterplane  

     area about centerplane axis 

 

(2) Trigonometry 








tanCM
V

Itan
xCC

ItanVx

OO

OO

 

 

  CM = IOO / V 

 

  GM = CM – CG 

 

  GM = CG
V

IOO     

 

GM > 0  Stable 

 

GM < 0  Unstable 
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Fluids in Rigid-Body Motion 
 

For fluids in motion, the pressure variation is no longer 

hydrostatic and is determined from application of Newton’s 

2nd Law to a fluid element. 

ij = viscous stresses       net surface force in X direction 

p = pressure     

Ma = inertia force 

W = weight (body force) 

 

Newton’s 2nd Law    pressure  viscous 

 

Ma = F = FB + FS 

 

per unit volume ( V)   a = fb + fs 

 

The acceleration of fluid particle 

   a = VV
t

V

Dt

VD





  

   fb = body force = k̂g  

   fs = surface force = fp + fv 

V
zyxx

p
X zxyxxx

net 
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   fp = surface force due to p = p 

   fv = surface force due to viscous stresses ij 

 

b p v
a f f f     

 

ˆa gk p     

 

 

inertia force = body force due   +   surface force due to 

   to gravity   pressure gradients 

 

Where for general fluid motion, i.e. relative motion 

between fluid particles: 

 
convective

local acceleration
acceleration

DV V
a V V

Dt t


   

  substantial derivative 

x: 
x

p

Dt

Du




  

 
x

p

z

u
w

y

u
v

x

u
u

t

u
































  

 

y: 
y

p

Dt

Dv




  

 
y

p

z

v
w

y

v
v

x

v
u

t

v
































  

 

Neglected in this chapter and 

included later in Chapter 6 

when deriving complete 

Navier-Stokes equations 
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z:  zp
zz

p
g

Dt

Dw
 









  

  zp
zz

w
w

y

w
v

x

w
u

t

w
 
































 

 

But in this chapter rigid body motion, i.e., no  

relative motion between fluid particles 

 

a = (p + z) Euler’s equation for inviscid flow 

 

 V = 0  Continuity equation for  

incompressible flow (See Chapter 6) 

 

4 equations in four unknowns V and p 

 

For rigid body translation: ˆˆ
x za a i a k   

For rigid body rotating: 
2

r̂a r e    

 

If 0a  , the motion equation reduces to hydrostatic 

equation: 

0
p p

x y

 
 

   

p

z



 


 

 

Note: for V = 0 

 


















g
z

p

0
y

p

x

p

k̂gp

 



57:020 Fluid Mechanics                                                                 Chapter 2 

Professor Fred Stern    Fall 2012 
36 

Examples of Pressure Variation From Acceleration 

 

Uniform Linear Acceleration: 

    k̂ggagk̂gap

pk̂ga




 

   k̂aîaak̂agîap zxzx   

 zx ag
z

p
a

x

p










 

 

x

p
a

x



 


 

1. 0xa    p increase in +x 

2. 0xa    p decrease in +x 

 

 zag
z

p





  

1. 0za    p decrease in +z 

2. 0za   and za g  p decrease in +z but slower than g 

3. 0za   and za g  p increase in +z 
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ŝ= unit vector in direction of p 

=p /p 

=
  

   2/12
z

2
x

zx

aga

k̂agîa




 

 

n̂  = unit vector in direction of p = constant 

    = ĵŝ    ijkijk 

    = 
  2/12

z
2
x

zx

)ag(a

î)ag(k̂a




 

 

 = tan-1 ax / (g + az) = angle between n̂  and x 

   2/12
z

2
x agaŝp

ds

dp
  >  g 

p = Gs + constant    pgage = Gs 
G 

 to p 

by definition lines 

of constant p are 

normal to p 
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Rigid Body Rotation: 

 

Consider a cylindrical tank of liquid rotating at a constant 

rate k̂  

 

 

 
       ora    

centripetal acceleration 

 

        = r
2êr      

        = r

2

ê
r

V
  

)ag(p      zr ê
z

ê
r

1
ê

r 












   

      = r
2êrk̂g          grad in cylindrical coordinates 

 

i.e.,  2r
r

p





  g

z

p





   0

p





 

  C (r) 

and p = c)z(fr
2

22 


 

  

 

  p = gzr
2

22 


 + constant  
 g2

V
z

p 2

constant 

         V = r

pressure distribution is hydrostatic in z direction 

pz = -g   

p = -gz + C(r) + c 
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The constant is determined by specifying the pressure at 

one point; say, p = po at (r, z) = (0, 0) 

 

 p = po  gz + 
2

1
r22 

Note: pressure is linear in z and parabolic in r 

 

Curves of constant pressure are given by 

 

 z = 2
22

0

2
bra

g

r

g

pp








 

 

which are paraboloids of revolution, concave upward, with 

their minimum point on the axis of rotation 

 

Free surface is found by requiring volume of liquid to be 

constant (before and after rotation) 

 

The unit vector in the direction of p is 

 

   
2/1222

r
2

rg

êrk̂g
ŝ





 


  

 

2r

g

dr

dz
tan


   slope of ŝ  

 

i.e.,  r = C1exp 











 


g

z2

  equation of p surfaces
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