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Chapter 2: Pressure and Fluid Statics

Pressure

For a static fluid, the only stress is the normal stress since
by definition a fluid subjected to a shear stress must deform
and undergo motion. Normal stresses are referred to as
pressure p.

For the general case, the stress on a fluid element or at a
point is a tensor

Py |  1;j = stress tensor
i g
QLA-'J\ — : ”"'/Txh}' IR I
FYP ~ Gax = Txx  Txy Txz
Lo Tzx Tzy Tz
== -
| = face
J = direction
For a static fluid,
;=0  i# shear stresses = 0
Ti = =P = Tax = Tyy = Tz 1 =] normal stresses =-p

Also shows that p is isotropic, one value at a point which is
independent of direction, a scalar.
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Definition of Pressure:

oF dF )
_|II’T16A da N/m”=Pa (Pascal)

0A—0
F = normal force acting over A

As already noted, p is a scalar, which can be easily
demonstrated by considering the equilibrium of forces on a
wedge-shaped fluid element

Pa4
Geometry | N—‘ |
AA = A g Ay | o : = e p AAd Sin 0L
Ax=Alcosaa 0 I_A____LllNEiEht Az=Alsino
Az =AY sina 1 s
: I Ax = Al cos o
p,Ad cosa
W =mg
XFy=0 = pMg
pPrAA SIn a - pyAASIn o =0 =M
Pn = Px M =% AXAzAy
YE. =0 —p,AlAycosa +p, A/Ay coso
=
-pnAA cos o, + p,AA cos o - W =0 —%MZ cosasin oAy =0
—! (M cosa)(Alsin o)Ay +AlAy Cos o

AX AZ —p, +pz—%Afsina=0
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— P, + P, —%Msina =0

p,=p, forAl—0
1.e., Pn=Px=Py=DP:

p is single valued at a point and independent of direction.
A body/surface in contact with a static fluid experiences a
force duetop

Ep == IdeA
Sg

Note: if p = constant, F, = 0 for a closed body.

Scalar form of Green's Theorem:

j fnds = i viav f = constant =>Vf=0
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Pressure Transmission

Pascal's law: in a closed system, a pressure change
produced at one point in the system is transmitted
throughout the entire system.

Absolute Pressure, Gage Pressure, and Vacuum

Pg>0
Pa = atmospheric
> pressure =
Pa=be Py <0 101.325 kPa
PA < Pa
pa = 0 = absolute
Zero

FOr pa>pa, Py = Pa— Pa = gage pressure

For pa<pa, Pvac = -Pg = Pa — Pa = Vacuum pressure
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Pressure VVariation with Elevation

Basic Differential Equation

For a static fluid, pressure varies only with elevation within
the fluid. This can be shown by consideration of
equilibrium of forces on a fluid element

2
: 3 1% order Taylor series
o estimate for pressure
3 xX | variation over dz

—\VW”{ Ax Aw Ax
A ?5 3

Newton's law (momentum principle) applied to a static
fluid

>F=ma=0 for a static fluid

e, ZF=2F, =XF,=0

SF, =0
odxdy — (p + %dz)dxdy _ pgdxdydz = 0
op o

=P

Basic equation for pressure variation with elevation
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sz:O ZFX:O

pdxdz — (p+ ?dy)dxdz =0 pdydz—(p+ ?dx)dydz =0
y X

P_, P_,
oy OX

For a static fluid, the pressure only varies with elevation z
and is constant in horizontal xy planes.

The basic equation for pressure variation with elevation can
be integrated depending on whether p = constant or

p = p(2), i.e., whether the fluid is incompressible (liquid or
low-speed gas) or compressible (high-speed gas) since

g ~ constant

Pressure VVariation for a Uniform-Density Fluid

. ‘22’ =—pg=—y p = constant for liquid
gl T Ap =—yAz

Z pz_plz_y(ZZ_Zl)

D=—yz Alternate forms:
P, +YZ, =P, +YZ, =constant
P + yZ =constant piezometric pressure
p(z=0)=0 gage

i.e., P =—YZ increase linearly with depth
decrease linearly with height

P +z =constant  piezometric head

Y
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Oil with a specific gravity of 0.80 forms a layer
0.90 m deep in an open tank that is otherwise filled
with water. The total depth of water and oil is 3 m. What is the gage pressure at
the bottom of the tank?

p+7yz=constant
P, +vZ, =P, +YZ,
@ p2:p1+Y(Zl_Zz)

e I
é oil ® 080m P, =P, =0 ;
7.06 D, =7.,AZ = 8x9810x.9 = 7.06kPa

Wa;grc 210 m Ps =Pz + Y water (ZZ - ZS)
I'=10° ‘

=7060+9810x2.1
27.7 @It —27.7kPa

Solution First determine the pressure at the oil—water interface, staying within
the oil, and then caiculate the pressure at the bottom.

VvyYVY l v

&+z5ﬁ£~2‘+31
Y Y

where p; is the pressure at free surface of oil, z; is the elevation of free surface
of oil, p; is the pressure at interface between oil and water, and z, is the elevation
at interface between oil and water, For this example, p; = 0, ¥ = 0.80 X
9810 N/m’, zy == 3 m, and z, = 2.10 m. Therefore, :

P2 =090 m X 0.80 X 9810 N/m’ = 7.06 kPa gage

Now obtain p; from

L. g3 == gy
¥
where p; has already been calculated and y == 9810 N/m’.

7060
i o = i
73 9830(9&0 2.10) 27.7 kPa gage g
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Pressure VVariation for Compressible Fluids:

Basic equation for pressure variation with elevation

d
d—p=—7=—7(p,2)=—pg
YA

Pressure variation equation can be integrated for y(p,z)
known. For example, here we solve for the pressure in the

atmosphere assuming p(p,T) given from ideal gas law, T(z)
known, and g = g(z).

p=pRT R = gas constant = 287 J/kg -°K dry air
p,T in absolute scale

dp _ pg

dz RT

dp -9 dz

which can be integrated for T(z) known
P R T(2)
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Pressure VVariation in the Troposphere

T=To— a(z-2) linear decrease

T =T(2,) where p = po(z,) known
o = lapse rate = 6.5 °K/km

dp_ g dz 2'=T,-a(z-2,)

P R [To —OL(Z—ZO)] dz'=adz

Inp= oc%ln[TO —o(z—-2,)] + constant
use reference condition Zo= gafth surface

np, =2 InT, + constant o= 101.3 kPa

aR
T=15°C
solve for constant o = 6.5 °K/km
T,—o(z—z
nP 9, To-Z-2)
P, ©oR T,

P _ |:To o OC(Z - Zo):|g/aR
Po T

0

I.e., p decreases for increasing z
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Pressure VVariation in the Stratosphere

T=T,=-55°C
dp__gdz
p R T,

g

Inp=———2z + constant
RT,

use reference condition to find constant

£ _ e—(z—zo)g/RTS

Po

P=P, exp[—(z - Zo)g / RTS]

I.e., p decreases exponentially for increasing z.

Pressure Measurements

Pressure is an important variable in fluid mechanics and
many instruments have been devised for its measurement.
Many devices are based on hydrostatics such as barometers
and manometers, i.e., determine pressure through
measurement of a column (or columns) of a liquid using the



57:020 Fluid Mechanics Chapter 2
Professor Fred Stern Fall 2012 11

pressure variation with elevation equation for an
incompressible fluid.

Differential L "¢ — |

e (
manometer v L ?
Ah

More modern devices include Bourdon-Tube Gage

(mechanical device based on deflection of a spring) and

pressure transducers (based on deflection of a flexible

diaphragm/membrane). The deflection can be monitored

by a strain gage such that voltage output is oc Ap across

diaphragm, which enables electronic data ach|5|t|on with
computers. :

Bourdon-tube
spring

Bourdon-Tube
Gage

Section 4-4
through tube

(a) (b)

In this course we will use both manometers and pressure
transducers in EFD labs 2 and 3.
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Manometry

1. Barometer

Py + Yth = Patm

Patm = YHgh py~ 0 i.e., vapor pressure Hg
nearly zero at normal T
h~76cm
Pam ~ 101 kPa (or 14.6 psia)

Note: Pam 1S relative to absolute zero, i.e., absolute
pressure. Pam = Pam(lOcation, weather)

Consider why water barometer is impractical
YthHg :YHzotho

Mo = yy“g Mg = StgNg =13.6x76 =1033.6cm = 341t
H,0
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2. Piezometer Datm

patm + Yh - ppipe = p abSOIUte

p=yh gage

Simple but impractical for large p and vacuum pressures
(i.€., Pans < Patm). Also for small p and small d, due to large
surface tension effects, could be corrected using

Ah=4c/vyd, but accuracy may be problem if p/y = Ah.

3. U-tube or differential manometer

4 v

€ - H— 1 patm
SR
Y{manometer liquid)
P1+ 'YmAh — Y1 =4 P1 = Patm
P4 = ymAh —y1 gage

= Yw[SmAh =S 1]
for gases S << S, and can be neglected, i.e., can neglect Ap
in gas compared to Ap in liquid in determining P4 = Ppipe-
Example:



yAh
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Air at 20 °C is in pipe with a water manometer. For given
conditions compute gage pressure in pipe.

) T e 1 =140 cm

2| 1]

Waker

/p{ +yAh = p;3 step-by-step method

Ah=70cm

ps=? gage (i.e.,p;=0)

Pressure same at 2&3 since
same elevation & Pascal’s
law: in closed system

P3 - Yairl = Pa pressure change produce at
one part transmitted
throughout entire system

P1 + YAh - y4i 1 = g complete circurtmetnod

yAh - Yairl = Pa gage

Ywaer(20°C) = 9790 N/m® = p; = yAh = 6853 Pa [N/m’]

Yair = PY
pabs

p  (ps+pan)  6853+101300

PTRT TR(C+273) 287(20+273)
°K

vair = 1.286 x 9.81m/s?* = 12.62 N/m®

note Yair << Ywater

\
or

=1.286 kg/m° | could

\ use
Table
A3

D2 =Ps - Varl = 6853~ 12.62 x 1.4 = 6835 Pa

17.668
If neglect effect of air column

ps = 6853 Pa
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A differential manometer determines the difference in
pressures at two points (Dand 2 when the actual pressure
at anv point in the svstem cannot be determined.

&

2
/ R

X

p1+yf€1—ymAh — (62 —Ah)= p2
pl_pz ZYf (62 _fl)"_(Ym _Yf )Ah

(ﬂwlj—(&wzj:(y—m— jAh
V¢ V¢ V¢

_

difference in piezometric head

*if fluid isa gas v <<vym: P1— P2 =ymAh

*if fluid is liquid & pipe horizontal £, = /.,
P1— P2 = (ym- v) Ah
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Hydrostatic Forces on Plane Surfaces

For a static fluid, the shear stress is zero and the only stress
Is the normal stress, i.e., pressure p. Recall thatp is a
scalar, which when in contact with a solid surface exerts a
normal force towards the surface.

§ A% =-patk

% ~

|:p =—[pndA
A

For a plane surface n = constant such that we can separately
consider the magnitude and line of action of F,.

F

o| =F=[pdA
A

Line of action is towards and normal to A through the
center of pressure (Xcp, Yep)-
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Unless otherwise stated, throughout the chapter assume pam
acts at liquid surface. Also, we will use gage pressure so
that p = 0 at the liquid surface.

Horizontal Surfaces
\/

horizontal surface with area A

4 p = constant

F=[pdA=pA

Line of action is through centroid of A,
1.e., (Xeps Yep) = (x, y)
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Inclined Surfaces T
gl |z
dp B
dz ! »
Ap _ —’YAZ pRY¥SIRQ

(,é 5
(x,y) = centroid of A
FIGURE 3.10
= o g o (Xeo»Yeo) = center of pressure
Distribution of

hydrostatic pressure on a
plane surfuce.

y

View ¢-C

Free surface P=p,
= | ’ A

hix,y) S

Resultant

force:

Plan view of arbitrary plane surface

dF = pdA =yy sin o dA _
- y and sin o are constants
P

F = [pdA = ysin o[ ydA vl

YA
1% moment of area
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F=ysinayA

—
p = pressure at centroid of A

Magnitude of resultant hydrostatic force on plane surface is
product of pressure at centroid of area and area of surface.

Center of Pressure

Center of pressure is in general below centroid since
pressure increases with depth. Center of pressure is
determined by equating the moments of the resultant and
distributed forces about any arbitrary axis.

Determine Yy, by taking moments about horizontal axis 0-0

Yol = ide
[ypdA
A
[y(yysin o)dA
A
= ysinafy?dA
&

l, = 2" moment of area about 0-0
= moment of inertia
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transfer equation: | :y2A+I

0

| = moment of inertia with respect to horizontal
centroidal axis

YepF =7sin a(y’A+1)
J— . _2 —
Yep (PA) =ysina(y A+l)

Yoy Sin a YA =ysin o (y'A+1)

Yep i below centroid by 1/yA
yep — Y for large y

For p, = 0, y must be measured from an equivalent free
surface located po/y above vy.
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Determine X, by taking moment about y axis

XpF = [xdF
A
[ XpdA
A

Xgp (YYSin @A) = [X(yysin o)dA
A

Xep glA = IXydA
A

l,y = product of inertia
= Iy +XyA transfer equation
Xep YA = Ly + XYA
+X

Xep =

&

For plane surfaces with symmetry about an axis normal to
0-0, Iy =0 and X, = X.
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nis

nls

‘\
]

Sl K=
S <

(b) Circle

1, = 0.1098%*

1, =0.39278*

l,.=0

e

(¢} Semicircle
1. =1, =0.05488R"
1, =-0.016478
E
y 2 A=bL A = nR?
! bL? 4
4?”" i T ’,\'.\'=E ‘é‘x —R_—‘_ l\'.\'=%
L
!
b1 b
2 2
(a) (b)
]
/’ bL 2
P\ o2 AT =L
/
¥ 3 , |
J— | I, = 0.10976R*
x \X— 7 36 il
| L b(b—2s)L> i B
/ 3 l.\'_y = T_ |/
b l b o | sl
= - R R 3r
’ 2 /’1 2 l !

() (d)
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Hydrostatic Forces on Curved Surfaces

z 15‘. Free surface
ARy
™ W
ST
¥
Al DB
" p=vh
| F=—/pndA h = distance below
e A
free surface
Horizontal Components (x and y components)
F,=F-i=—[pn-idA
A %(_J

T dA, = projection of ndA onto

= —AI PAA,  plane L to x-direction

dA, =n-jdA

= projection ndA
onto plane L to
y-direction

Therefore, the horizontal components can be determined by
some methods developed for submerged plane surfaces.

The horizontal component of force acting on a curved
surface is equal to the force acting on a vertical projection
of that surface including both magnitude and line of action.
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Vertical Components

2 P g

AWa

AN

=

o “a

—F-k=—[pn-kdA
A

=— [pdA, p=vh

h=distance
below free
surface

=y [hdA, =V
AZ
= weight of
fluid above
surface A

The vertical component of force acting on a curved surface
Is equal to the net weight of the column of fluid above the
curved surface with line of action through the centroid of

that fluid volume.
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- Example: Drum Gate

Pressure Diagram
p = yh = yR(1-cosb)
n=-sin0i+cosOk

dA= ¢ Rdo
F= —TjtyR(l—COS 0)(—sin 01+ cosOk)/Rdo
o T T
P n dA
Fi=F, =+y€R27jt(1—cose)sin 0do
0

T

= yéR{—cose+%cosze = 2y/R*?

0
= (YR)(2R ') = same force as that on projection of
p A area onto vertical plane

F, = —yEsz(l—cose) cos0do
0

T

=—v/R?| sin g0 _sin20
2 4

0

2
= yZRZE:yf(%j:yV

2
= net weight of water above surface
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Buoyancy

Archimedes Principle

Sz

Fe = Fo.—Fu

= fluid weight above Surface 2 (ABC)
— fluid weight above Surface 1 (ADC)

= fluid weight equivalent to body volume M
Fg = pgV¥ M = submerged volume

Line of action is through centroid of M = center of
buoyancy

Net Horizontal forces are zero since
Feap = Fecp
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Hydrometry

A hydrometer uses the buoyancy principle to determine
specific weights of liquids.

S=3/xn, v T8hioewe

{8 3
Az Svoss Sreliim
Lo d Slewmn 'y = oY

f?&z W\t‘ B ‘ ?Fg' »w
| w

Te *‘C—-/ x\“, W= FG = &N*o i "K *

S= X“'/k‘w

W =mg = vs¥ = Sy ¥

i M
a = Cross section area stem
\/S =M, — aAh aAh =M, — M, /S
Ah = i-(l—lj =Ah(S)
a S
Ah = i% calibrate scale using fluids of known S
a
V

—_ 0

VY, —aAh
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Example (apparent weight)

King Hero ordered a new crown to be made from pure
gold. When he received the crown he suspected that other
metals had been used in its construction. Archimedes
discovered that the crown required a force of 4.7# to
suspend it when immersed in water, and that it displaced
18.9 in® of water. He concluded that the crown was not
pure gold. Do you agree?

- ,Pwa‘ &Mw 5
A = | /

/ §Fb Vs
/
/ w 4

7 7 7 7

2Fen=0=W,+F,—-W=0=>W,=W —F, = (yc - yw)¥

:YCV, Fb - ’YW)VL
W W, 47,V
or yc=—va+yW= avw
47 +62.4x18.9/1728
_ _ 492.1 =
Ye 18.9/1728 Ped

= pc = 15.3 slugs/ft®

~ psteer @Nd since gold is heavier than steel the crown
can not be pure gold
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Stability of Immersed and Floating Bodies

Here we’ll consider transverse stability. In actual

applications both transverse and longitudinal stability are
Important.

Immersed Bodies

Center of
buoyancy

FIGURE 3.15
Conditions of stability
for immersed bodies. Weight

{aj Stable. (b} Neutral. -
(c) Unstable. {a} (b} 5

Static equilibrium requires: > F, =0 and > M =0

>.M = 0 requires that the centers of gravity and buoyancy
coincide, i.e., C = G and body is neutrally stable

If C is above G, then the body is stable (righting moment
when heeled)

If G is above C, then the body is unstable (heeling moment
when heeled)
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Floating Bodies

For a floating body the situation is slightly more
complicated since the center of buoyancy will generally
shift when the body is rotated depending upon the shape of
the body and the position in which it is floating.

Positive GM Negative GM

The center of buoyancy (centroid of the displaced volume)
shifts laterally to the right for the case shown because part
of the original buoyant volume AOB is transferred to a new
buoyant volume EOD.

The point of intersection of the lines of action of the
buoyant force before and after heel is called the metacenter
M and the distance GM is called the metacentric height. If
GM is positive, that is, if M is above G, then the ship is
stable; however, if GM is negative, the ship is unstable.
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Floating Bodies )
[
o = small heel angle 2{ e .\ﬁo
x =CC' = lateral displacement v - Q/ *
of C i : M
C = center of buoyancy a4
i.e., centroid of displaced ,,M
volume VW A

Solve for GM: find x using
(1) basic definition for centroid of V; and

(2) trigonometry o
Fig. 3.17

(1) Basic definition of centroid of volume M

XV = [xdV =Y x.A¥, moment about centerplane

XV = moment V before heel — moment of ¥aos
~ —— — + moment of Meop
= 0 due to symmetry of
original V about y axis
I.e., ship centerplane

XM=— [ (=X)dV+ [ XxdV tan o = y/x
AOB EOD
d\ = ydA = x tan o dA

XV= | x2 tan o dA+ | x2tanodA
AOB EOD



57:020 Fluid Mechanics
Professor Fred Stern Fall 2012

Chapter 2
32

XV = tan o[ X*dA
ship waterplane area
— _/

~

moment of inertia of ship waterplane
about z axis O-0O; i.e., loo

loo = moment of inertia of waterplane
area about centerplane axis

(2) Trigonometry
cc = x = 8% oo _ cptang
CM = |oo/¥
GM=CM-CG
GM = IO—O—CG
V
GM>0 Stable

GM<O0 Unstable
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Fluids in Rigid-Body Motion

For fluids in motion, the pressure variation is no longer
hydrostatic and is determined from application of Newton’s

2" aw to a fluid element.

Q e .-‘Dph Axl 0\3(»\&

Tjj = VISCOUS stresses net surface force in X direction

zX jv
Z

p = pressure
Ma = inertia force X P Ove OTyx G
W = weight (body force) net ax X oy 0O

T — ~ _/
Newton’s 2" Law pressure VIiSCcous

Ma=2>F=Fg+Fs
per unit volume (= M) pa="f, +f;

The acceleration of fluid particle

a= DV 6V VRV,
Dt ot

f, = body force = — pgk

f; = surface force = f, + f,




57:020 Fluid Mechanics Chapter 2
Professor Fred Stern  Fall 2012 34

f, = surface force due to p = -Vp
f, = surface force due to viscous stresses tj;

Neglected in this chapter and
pa= fb +f + , included later in Chapter 6
= =P/ =Y \hen deriving complete
Navier-Stokes equations

pa=—pgk—-Vp
inertia force = body force due + surface force due to
to gravity pressure gradients

Where for general fluid motion, i.e. relative motion
between fluid particles:

a:D\L: N +V-W _ ..
-~ Dt ot — substantial derivative
Ia?c(if(lelleration ggrc]gfecr;\t/?on
X: @__@
Dt OX
ou ou ou ou op
— 4+ U—+V—F+W— |=———
ot X oYy oz OX
Dv 0
y: ~_.2P
Dt oy
oV
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Mo pg-P=(pip)
" oz oz

W g W W :—g(pﬂ/z)
Plaa " "ox oy ez

But in this chapter rigid body motion, i.e., no
relative motion between fluid particles

Note: forV =0
Vp = —pgk
P _b_,
oX oYy
op _
P pg =—v

pa=-V(p+vyz) Euler’s equation for inviscid flow

VV=0 Continuity equation for

incompressible flow (See Chapter 6)

4 equations in four unknowns V and p

For rigid body translation: a= al+ aZIZ
For rigid body rotating: & =-rQ’,

If a=0, the motion equation reduces to hydrostatic

equation:
»_op_j
OX oYy
0
»__,

0z
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Examples of Pressure Variation From Acceleration

Uniform Linear Acceleration:
pa =—pgk—Vp
vp=—pla+gk)=p(g-a)  g=-gk

Vp=—pla,i+(g+a, k]| a=a,l+ak
o _ o

—pa - _p(g+a
=P =plgra;)
op
—~ —_pa
ox La,

1. a,<0 p increase in +x
2. 8,>0 p decrease in +x
op

= _p(g+a

- =—rlg+a,)

1.8,>0 p decrease in +z

2.8,<0 and ‘az‘ <d pdecrease in +z but slower than g

3.a,<0 and [a,|>0 p increase in +z
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§= unit vector in direction of Vp
=vp/|vpl

_ —lad+(g+a, ]

- R+gra, ]

A = unit vector in direction of p =

n —
=8x| Ijkijk
x ] jKij T~ tovp
—_a.k+(ag+a N by definition lines
= k+(+a,) T of constant p are
[a)z( +(g+az)2]1 normal to Vp

0 =tan" a,/ (g + a,) = angle between f and x

d . /2
d—'O=V|o-S=p[ai+(9+az)2]l > pg
S A YA g

p= pGS + constant = Pgage = pGS
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Rigid Body Rotation:

Consider a cylindrical tank of liquid rotating at a constant

rate Q = Ok
I
. e T w1 REVY A
St —odatin. Ll \ s > Y\M(}‘.‘ ;
R amax(anr)
— 1% centripetal acceleration
7 N ]
sl = —rQ%
e e !
B V= Uels =Y‘J‘-ga - ——Ar
r
o 10 0
Vp=p(g-a V=8, +-—8,+—8
P=p(g-2) o " roe ? az
= —pgk +prQ°e, grad in cylindrical coordinates
- P 2 ap op
e, —=prQ — = — =
o P w9 o0
C (I‘) pressure distribution is hydrostatic in z direction
and p=P2r202+f(z)+c
P ( ) Pz =-pY
p=-pgz+C(r) +c
p p, ., V*
p=LSr’Q%—pgz +constant | =+ z——— =constant
2 Y 29
V =rQ




57:020 Fluid Mechanics Chapter 2
Professor Fred Stern  Fall 2012 39

The constant is determined by specifying the pressure at
one point; say, p = po at (r, z) = (0, 0)

1
p=po—pgz+ rap

Note: pressure is linear in z and parabolic in r

Curves of constant pressure are given by

_ 22
7= Po-pP O =a+br?

A9 29

which are paraboloids of revolution, concave upward, with
their minimum point on the axis of rotation

Free surface is found by requiring volume of liquid to be
constant (before and after rotation)

The unit vector in the direction of Vpis 2

- —pgk + prQ?e,
5 ) \2 1/2 Av
|:(pg) +(pI’Q ) :| wa& — \¢
<
tane:%:—i2 slope of §
dr rQQ

— _/
~—
2

e, r= Clexp[— Ej equation of Vp surfaces
g
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Fig. 2.23 Experimental demonstration with buoyant streamers of the fluid force field in
rigid-body rotation: (top) fluid at rest (streamers hang vertically upward); (bottom) rigid-
body rotation (streamers are aligned with the direction of maximum pressure gradient).
(From Ref. 5. Courtesy of R. lan Fletcher.)

94 PRESSURE DISTRIBUTION IN A FLUID



