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Chapter 2:  Pressure and Fluid Statics

Pressure

For a static fluid, the only stress is the normal stress since by definition a fluid subjected to a shear stress must deform and undergo motion.  Normal stresses are referred to as pressure p.

For the general case, the stress on a fluid element or at a point is a tensor
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For a static fluid,


ij= 0 
i(j

shear stresses = 0


 ii= (p = xx= yy= zz
i = j

normal stresses =-p

Also shows that p is isotropic, one value at a point which is independent of direction, a scalar.

Definition of Pressure:


[image: image204.jpg]    N/m2 = Pa (Pascal)

F = normal force acting over A

As already noted, p is a scalar, which can be easily demonstrated by considering the equilibrium of forces on a wedge-shaped fluid element
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Geometry
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Fx = 0


pnA sin - pxA sin = 0


pn = px
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Fz = 0


-pnA cos + pzA cos - W = 0
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i.e.,    pn = px = py = pz

p is single valued at a point and independent of direction. 

A body/surface in contact with a static fluid experiences a force due to p
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Note:  if p = constant, Fp = 0 for a closed body.
Scalar form of Green's Theorem:
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f = constant ((f = 0

Pressure Transmission

Pascal's law: in a closed system, a pressure change produced at one point in the system is transmitted throughout the entire system.

Absolute Pressure, Gage Pressure, and Vacuum
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For pA>pa,
pg = pA – pa = gage pressure 
For pA<pa, 
pvac = -pg = pa – pA = vacuum pressure 
Pressure Variation with Elevation

Basic Differential Equation
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For a static fluid, pressure varies only with elevation within the fluid.  This can be shown by consideration of equilibrium of forces on a fluid element

Newton's law (momentum principle) applied to a static fluid


F = ma = 0  for a static fluid


i.e., Fx = Fy = Fz = 0


Fz = 0
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Basic equation for pressure variation with elevation
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For a static fluid, the pressure only varies with elevation z and is constant in horizontal xy planes.

The basic equation for pressure variation with elevation can be integrated depending on whether  = constant or             = (z), i.e., whether the fluid is incompressible (liquid or low-speed gas) or compressible (high-speed gas) since 

g ( constant

Pressure Variation for a Uniform-Density Fluid
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Alternate forms:

[image: image176.jpg][image: image177.jpg]

[image: image17.wmf]1122

pzpz

+g=+g=


[image: image178.jpg]

[image: image18.wmf]pz

+g=


[image: image179.jpg][image: image180.jpg]

[image: image19.wmf](

)

pz00

==


[image: image181.png]


i.e.,
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Pressure Variation for Compressible Fluids:

Basic equation for pressure variation with elevation
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Pressure variation equation can be integrated for (p,z) known.  For example, here we solve for the pressure in the atmosphere assuming ((p,T) given from ideal gas law, T(z) known, and g ( g(z).
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R = gas constant = 287 J/kg ((K






p,T in absolute scale
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which can be integrated for T(z) known

[image: image186.bmp]
Pressure Variation in the Troposphere



T = To ( (z – zo)

linear decrease



To = T(zo)
where p = po(zo) known



 = lapse rate = 6.5 (K/km
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solve for constant
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i.e., p decreases for increasing z

Pressure Variation in the Stratosphere



T = Ts = (55(C
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use reference condition to find constant
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i.e., p decreases exponentially for increasing z.

Pressure Measurements

Pressure is an important variable in fluid mechanics and many instruments have been devised for its measurement.  Many devices are based on hydrostatics such as barometers and manometers, i.e., determine pressure through measurement of a column (or columns) of a liquid using the pressure variation with elevation equation for an incompressible fluid.
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[image: image190.jpg]More modern devices include Bourdon-Tube Gage (mechanical device based on deflection of a spring) and pressure transducers (based on deflection of a flexible diaphragm/membrane).  The deflection can be monitored by a strain gage such that voltage output is ( (p across diaphragm, which enables electronic data acquisition with computers.
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In this course we will use both manometers and pressure transducers in EFD labs 2 and 3.

Manometry
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1. Barometer


pv + (Hgh = patm


patm = (Hgh

pv ( 0  i.e., vapor pressure Hg 

nearly zero at normal T



h ( 76 cm


(
patm ( 101 kPa (or 14.6 psia) 

Note:
patm is relative to absolute zero, i.e., absolute pressure.  patm = patm(location, weather)

Consider why water barometer is impractical
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2. Piezometer

[image: image193.jpg][image: image194.jpg]
patm + (h = ppipe = p

absolute


p = (h


gage

Simple but impractical for large p and vacuum pressures (i.e., pabs < patm). Also for small p and small d, due to large surface tension effects, could be corrected using 
[image: image34.wmf]h4d

D=sg

, but accuracy may be problem if p/( ( (h.
[image: image195.jpg]
3. U-tube or differential manometer
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p1 + (m(h ( (l = p4


p1 = patm
p4 = (m(h ( (l


gage


    = (w[Sm(h ( S l]

for gases S << Sm and can be neglected, i.e., can neglect (p in gas compared to (p in liquid in determining p4 = ppipe.

Example:
Air at 20 (C is in pipe with a water manometer.  For given conditions compute gage pressure in pipe.
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l = 140 cm







(h = 70 cm







p4 = ?    gage (i.e., p1 = 0)

[image: image202.jpg]
[image: image203.png]p1 + ((h = p3
step-by-step method

p3 - (airl = p4



p1 + ((h - (airl = p4

complete circuit method


((h - (airl = p4
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(K
(air = 1.286 ( 9.81m/s2 = 12.62 N/m3


note  (air << (water
p4 = p3 - (airl  = 6853 – 12.62 ( 1.4 = 6835 Pa






 17.668

if neglect effect of air column

p4 = 6853 Pa

A differential manometer determines the difference in pressures at two points ①and ② when the actual pressure at any point in the system cannot be determined.
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difference in piezometric head

(if fluid is a gas  (f << (m :  p1 – p2 = (m(h

(if fluid is liquid & pipe horizontal 
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Hydrostatic Forces on Plane Surfaces

For a static fluid, the shear stress is zero and the only stress is the normal stress, i.e., pressure p.  Recall that p is a scalar, which when in contact with a solid surface exerts a normal force towards the surface.
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For a plane surface n = constant such that we can separately consider the magnitude and line of action of Fp.
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Line of action is towards and normal to A through the center of pressure (xcp, ycp).

Unless otherwise stated, throughout the chapter assume patm acts at liquid surface.  Also, we will use gage pressure so that p = 0 at the liquid surface.

Horizontal Surfaces








F


[image: image42.wmf]ò

=

=

pA

pdA

F


Line of action is through centroid of A, 

i.e., (xcp, ycp) = 
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Inclined Surfaces


dF = pdA = (y sin ( dA
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Magnitude of resultant hydrostatic force on plane surface is product of pressure at centroid of area and area of surface.
Center of Pressure

Center of pressure is in general below centroid since pressure increases with depth.  Center of pressure is determined by equating the moments of the resultant and distributed forces about any arbitrary axis.

Determine ycp by taking moments about horizontal axis 0-0

ycpF   = 
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Io = 2nd moment of area about 0-0







= moment of inertia

transfer equation:
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= 
moment of inertia with respect to horizontal 

centroidal axis
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ycp is below centroid by 
[image: image53.wmf]A

y

/

I


ycp ( 
[image: image54.wmf]y

 for large 
[image: image55.wmf]y


For po ( 0, y must be measured from an equivalent free surface located po/( above 
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Determine xcp by taking moment about y axis


xcpF    =
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transfer equation
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For plane surfaces with symmetry about an axis normal to 0-0, 
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Hydrostatic Forces on Curved Surfaces




Horizontal Components

(x and y components)
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Therefore, the horizontal components can be determined by some methods developed for submerged plane surfaces.

The horizontal component of force acting on a curved surface is equal to the force acting on a vertical projection of that surface including both magnitude and line of action.

Vertical Components
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The vertical component of force acting on a curved surface is equal to the net weight of the column of fluid above the curved surface with line of action through the centroid of that fluid volume.

Example:  Drum Gate


Pressure Diagram

p = (h = (R(1-cos()
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     ( net weight of water above surface
Buoyancy

Archimedes Principle


FB  =  Fv2 – Fv1
      = fluid weight above Surface 2 (ABC) 

· fluid weight above Surface 1 (ADC)

      = fluid weight equivalent to body volume V
FB = (gV



V = submerged volume

Line of action is through centroid of V = center of buoyancy

Net Horizontal forces are zero since



FBAD = FBCD
Hydrometry

A hydrometer uses the buoyancy principle to determine specific weights of liquids.




W = mg = (fV = S(wV
W = (wV o = S(w(Vo ( (V) = S(w(Vo ( a(h)







 (f






a = cross section area stem


Vo/S = Vo ( a(h


a(h = Vo – Vo/S








(h = 
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calibrate scale using fluids of known S

     S = 
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Example (apparent weight)

King Hero ordered a new crown to be made from pure gold.  When he received the crown he suspected that other metals had been used in its construction.  Archimedes discovered that the crown required a force of 4.7# to suspend it when immersed in water, and that it displaced 18.9 in3 of water.  He concluded that the crown was not pure gold.  Do you agree?


(Fvert = 0 = Wa + Fb – W = 0 ( Wa = W – Fb = ((c - (w)V







W=(cV, 
 Fb = (wV 
or  (c = 
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Stability of Immersed and Floating Bodies

Here we’ll consider transverse stability.  In actual applications both transverse and longitudinal stability are important.

Immersed Bodies

Static equilibrium requires:  
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(M = 0 requires that the centers of gravity and buoyancy coincide, i.e., C = G and body is neutrally stable

If C is above G, then the body is stable (righting moment when heeled)

If G is above C, then the body is unstable (heeling moment when heeled)

Floating Bodies

For a floating body the situation is slightly more complicated since the center of buoyancy will generally shift when the body is rotated depending upon the shape of the body and the position in which it is floating.

     Positive 
[image: image90.wmf]GM



   Negative 
[image: image91.wmf]GM


The center of buoyancy (centroid of the displaced volume) shifts laterally to the right for the case shown because part of the original buoyant volume AOB is transferred to a new buoyant volume EOD.

The point of intersection of the lines of action of the buoyant force before and after heel is called the metacenter M and the distance GM is called the metacentric height.  If GM is positive, that is, if M is above G, then the ship is stable; however, if GM is negative, the ship is unstable.

Floating Bodies

( = small heel angle
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Solve for GM:  find 
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 using

(1) basic definition for centroid of V; and

(2) trigonometry










Fig. 3.17

(1) Basic definition of centroid of volume V
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= 0 due to symmetry of 




original V about y axis




i.e., ship centerplane
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dV = ydA = x tan ( dA
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ship waterplane area





moment of inertia of ship waterplane 




about z axis O-O; i.e., IOO
IOO = moment of inertia of waterplane 

  
  area about centerplane axis

(2) Trigonometry
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CM = IOO / V



GM = CM – CG



GM = 
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GM > 0

Stable

GM < 0

Unstable

Fluids in Rigid-Body Motion

For fluids in motion, the pressure variation is no longer hydrostatic and is determined from application of Newton’s 2nd Law to a fluid element.

(ij = viscous stresses
      net surface force in X direction

p = pressure





Ma = inertia force

W = weight (body force)


Newton’s 2nd Law



pressure

viscous

Ma = (F = FB + FS
per unit volume (( V)   (a = fb + fs
The acceleration of fluid particle




a = 
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fb = body force = 
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fs = surface force = fp + fv



fp = surface force due to p = ((p




fv = surface force due to viscous stresses (ij
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inertia force = body force due   +  
surface force due to




to gravity


pressure gradients

Where for general fluid motion, i.e. relative motion between fluid particles:
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substantial derivative
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y:
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But in this chapter rigid body motion, i.e., no 
relative motion between fluid particles
(a = (((p + (z)
Euler’s equation for inviscid flow


((V = 0

Continuity equation for 

incompressible flow (See Chapter 6)
4 equations in four unknowns V and p

For rigid body translation: 
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For rigid body rotating: 
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If 
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Examples of Pressure Variation From Acceleration
Uniform Linear Acceleration:
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1. 
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p increase in +x

2. 
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 EMBED Equation.3  [image: image124.wmf]
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Rigid Body Rotation:

Consider a cylindrical tank of liquid rotating at a constant rate 
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centripetal acceleration
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       grad in cylindrical coordinates

i.e., 
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and
p = 
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V = r(

The constant is determined by specifying the pressure at one point; say, p = po at (r, z) = (0, 0)


p = po ( (gz + 
[image: image150.wmf]2
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Note: pressure is linear in z and parabolic in r

Curves of constant pressure are given by


z = 
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[image: image152.wmf]
which are paraboloids of revolution, concave upward, with their minimum point on the axis of rotation

Free surface is found by requiring volume of liquid to be constant (before and after rotation)

The unit vector in the direction of (p is
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slope of 
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i.e.,  r = C1exp
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equation of (p surfaces


(ij = stress tensor



    =		(xx	(xy	(xz

		(yx	(yy	(yz
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i = face

j = direction
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pA < pa



pg < 0



pg > 0



pA > pa



pa = atmospheric 

        pressure = 

        101.325 kPa



pA = 0 = absolute 

              zero



1st order Taylor series estimate for pressure variation over dz



Z
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 = constant for liquid



constant       piezometric pressure



constant



gage



increase linearly with depth �decrease linearly with height



constant     piezometric head
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dry air



zo = earth surface 

    = 0



po = 101.3 kPa



T = 15(C



( = 6.5 (K/km



Differential manometer



Bourdon-Tube Gage



patm



(



patm



(air



Pressure same at 2&3 since same elevation & Pascal’s law: in closed system pressure change produce at one part transmitted throughout entire system



((h



or could use Table A.3



horizontal surface with area A



p = constant



F
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(x,y) = centroid of A



x



y



(xcp,ycp) = center of pressure



( and sin ( are constants
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1st moment of area
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� EMBED Equation.3  ���= pressure at centroid of A
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Ixy = product of inertia
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Free surface



p = (h



h = distance below free surface
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dAx = projection of ndA onto plane ( to x-direction



Stem



Bulb



V



� EMBED Equation.3  ���



Neglected in this chapter and included later in Chapter 6 when deriving complete Navier-Stokes equations



Note: for V = 0

	� EMBED Equation.3  ���



( to (p

by definition lines of constant p are normal to (p



G



pressure distribution is hydrostatic in z direction



pz = -(g  

p = -(gz + C(r) + c
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