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Chapter 11: Drag and Lift

11.1 Basic Considerations

Recall separation of drag components into form and skin-
friction

1

Cp =

I(p—pw)n-?dAﬂrW;-idA}
pVZA S S

—<<1 C¢>>Cp, streamlined body

Sl Cop>>C bluff body
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11.2 Drag of 2-D Bodies

First consider a flat plate both parallel and normal to the

flow
=
A ‘_ P
g Tw
CDp:]_ J(P=pP,)n-1=0
“pVPAS
2
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= T laminar flow
Rey
= % turbulent flow
Re/’
flow pattern
(8 ~
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vortex wake

typical of bluff body flow

where C, based on experimental data
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1
= ~[C,dA
As

=2 using numerical integration of experimental data

Cf:0

For bluff body flow experimental data used for cp.

In general, Drag = f(V, L, p, u, C, t, &, T, etc.)
from dimensional analysis

c/L

scale factor
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DRAG ON IMMERSED BODIES

S\M
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Figure 10.23 Pressure distributions around a cylinder for subcritical, supercritical, and inviscid
flows. :

Streamlines converge,
high-velocity region

Singularity
at the origin

Fig. E4.7

Potential Flow Solution: y=-U

ol r——1sin®
r

1

Cp( —a)=1-4sin® @ «— surface pressure
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Fig. 5.3 The proof of practical dimensional analysis: drag coefficients of a cylinder and
sphere: (a) drag coefficient of a smooth cylinder and sphere {data from many sources);
(b) increased roughness causes earlier transition to a turbuient boundary layer.

Fic. 34.—Flow round sphere below critical point.

(Wieselsberger.)

F1u. 35.—Owing to a thin wire ring round the sphere, the 2w becomes of the
other type with turbulent boundary layer.

(Wiesclsberger.)
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426 XV. Non-steady boundary layers

Fig. 15.5a to f. Formation of vortices in flow past a circular cylinder after acceleration from rest
(L. Prandtl)

S = point of separation

Fig. 2.12. Diagrammatic represen-
tation of fow in the boundary
layer near a point of separation
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alternate formation and shedding of vortices also creates a regular change in
pressure with consequent periodicity in side thrust on the cylinder. Vortex shed-
ding was the primary cause of failure of the Tacoma Narrows suspension bridge
in the state of Washington in 1940. Another, more commonplace, effect of vor.
tex shedding is the “singing” of wires in the wind.

If the frequency of the vortex shedding is in resonance with the natural fre--
quency of the member that produces it, large amplitudes of vibration with con.
sequent large stresses can develop. Experiments show that the frequency of
shedding is given in terms of the Strouhal number S, and this in turn is a func-
tion of the Reynolds number. Here the Strouhal number is defined as

d ' -
s=2 | 11-
where 7 is the frequency of shedding of vortices from one side of cylinder, in

Hz, d is the diameter of cylinder, and V, is the free-stream velocity. :
The relationship between the Strouhal number and the Reynolds numbcr for.

vortex shedding from a cxrcular cylinder is given in Fig. 11-10.

0.40
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v .
= ro!
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FIGURE 11-10  Strouhal number versus Reynolds number for flow past a circular cylin-.
der. [After Jones (14) and Roshko (23)] :

Other cylindrical and two-dimensional bodies also shed vortices. Conse--
quently, the engineer should always be alert to vibration problems when design-
ing structures that are exposed to wind or water flow.

Exmrus 11-2  For the ¢ylinder and conditions of Example 11-1, at what fl'c'
quency will the vortices be shed?
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Fig. 7.16 Drag versus Reynolds number for nearly two-dimensional bodies.

Table 7.2
DRAG OF TWO-DIMENSIONAL BODIES AT Re = 10°

Shape Cp based on frontal area Shape Cp based on frontal area
Plate: Half-cylinder:
_— I 20 — C] 12
Square cylinder:

e 21 _ D L7
Equilateral triangle: .
- <> 16 D —— Q 1.6
Half tube: '

e e — D>
——’D 23

Elliptical cylinder: Laminar Turbulent

1.2 0.3

21 O 0.6 02
| S—

1] ——

0.35 0.15

4:1

81 —

0.25 0.1
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Fig. 7.12 Drag of a streamlined two-dimensional cylinder at Re, = 10%: (a) effect of thick-

ness ratio on percentage [riction drag; (b) total drag versus thickness when based upon

two different areas.
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Figure 10.24 ljrag coefficients for a family of struts. (S. Goldstein,

0.3 0.4 0.5
t/L

Fluid Dynamics,”” Dover Publications. New York, 1965.)

Modern Developments in
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JIGURE 11-11 Coefficiem of drag versus Reynolds number for axisymmetric
sodies. [Data sources: Abbott (1), Breevoort (4), Freeman (9). and Rouse (24).]
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Table 73
DRAG OF THREE-DIMENSIONAL BODIES AT Re = 10°

Body Ratio Cp based on frontal area

Cube:

— 107

— <>
60° cone:

., — <) 0.5

Disk

—_— I S B Y
Cup:

) 14
—_— C 0.4

Parachute (low porosity):

—l @ 1-2

Rectangular plate:

b/h 1 1.18
—_— h 5 - 1.2
b 10 1.3
20 1.5
i © 20
Flat-faced cylinder:
L/id 0.5 1.15
1 0.90
—_— d 2 0.85
4 0.87
L 8 0.99
Ellipsoid: . Laminar Turbulent
T L/d 075 0.5 02
—_— d 1 047 0.2
_ 2 0.27 0.13
4 0.25 0.1
I 8 02 0.08
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Figure 10.25. Time history of the aerodynamic drag of cars in comparison with strean.ﬂined
bodies. ( From Hucho, W. H., Janssen, L. J., Emmelmann, H. J., 1976, ‘‘The Optimisation of
Body Details—A Method For Reducing The Aerodynamic Drag of Road Vehicles,”” SAE

760185.)

Figure 1. Interaction between two disks placed one behind the
other; (reference 1,2).
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(a) "BOX" SMAPE WITH SHARP EDGES ON WHEELS (4.0)

e

{b) BASIC CAR 8ODY WITH SHARP LATERAL EOGES (4.e

023
£ \\\’_
IR
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(e} WITH SHARP.EDGED WINDSHIELD, "T*  TAPERING

(d) DITTO, WITH LONG TAPERING TAIL (4.e)

(7} NASH BODY 1949 (5.0).

(1) EXTREME STREAMUINE SHAPE, TESTED BY AVA (1)

Figure 3. Drag coefficients of “standard’™ passenge I Cars. . A .
o : S . . ,

tested either in wind tunnels on geometrically similar Figure 4. Drag coefficients of several sinooth wind
models or by deceleration of the full-scale vehicle:s- tunnel models (tested over fixed ground plate).
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Figure 2-4. Typical naval ship stern appendages (from Kirkman,
et al., 1979) '

Cylimder with forverd
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Cylinder with ferverd end drag

Totl with ne tnterfironge drag -

Figure 2-5. Appendage decomposition (from Kirkman, et al., 1979)
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Fiéure 2-6. Nominal boundary layer thickness in way of the DOG 51
appendages. ‘
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11.3 Effect of Compressibility on Drag: Cp = Cp(Re, Ma)

Ma= "=
a
v\speed of sound = rate at which infinitesimal
disturbances are propagated from their
source into undisturbed medium

Ma<1 subsonic < 0.3 flow is incompressible,
Ma~1 transonic (=1 sonic flow) l.e., p ~ constant
Ma>1 supersonic

Ma>>1 hypersonic

Cp increases for Ma ~ 1 due to shock waves and wave drag

Magitica(Sphere) ~ .6

Maiticai(Slender bodies) ~ 1

For U >a: upstream flow is not warned of approaching
disturbance which results in the formation of

shock waves across which flow properties
and streamlines change discontinuously
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FIGURE 11.12 2.0

Drag characteristics of

LR

projectile, sphere, and

cylinder with 1.5

compressibility effects.
[After Rouse (26)]
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FIGURE 11.13

Contour plot of the drag
coefficient of the sphere
versus Reynolds and
Mach numbers.




