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Chapter 11: Drag and Lift

11.1 Basic Considerations
Recall separation of drag components into form and skin-friction

[image: image42.png]426 XV. Non-steady boundary layers

Fig. 15.5 a to {. Formation of vortices in flow past a circular cylinder after acceleration from rest
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Streamlining: One way to reduce the drag
Make a body streamlined:


( reduce the flow separation(reduce the pressure drag


( increase the surface area ( increase the friction drag

( Trade-off relationship between pressure drag and friction drag
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Trade-off relationship between pressure drag and friction drag

Benefit of streamlining: reducing vibration and noise
11.2 Drag of 2-D Bodies
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First consider a flat plate both parallel and normal to the flow
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laminar flow
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turbulent flow
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Fig. 5.3 The proof of practical dimensional analysis: drag coefficients of a cylinder and
sphere: (a) drag coefficient of a smooth cylinder and sphere (data from many sources);
(b) increased roughness causes earlier transition to a turbulent boundary layer.

Fia. 34.—Flow round sphere below critical point. (Wieselsberger.) Fio. 35.—Owing to a thin wire ring round the sphere, th? faw becomes of the
other type with turbulent boundary layer. (Wiesclsberger.)
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where Cp based on experimental data
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HGURE 11.3
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= 2    using numerical integration of experimental data

Cf  = 0

For bluff body flow experimental data used for cD.

In general, Drag = f(V, L, (, (, c, t, (, T, etc.)

from dimensional analysis
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     scale factor

Potential Flow Solution:  
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surface pressure

Flow Separation

Flow separation: 

(The fluid stream detaches itself from the surface of the body at
    sufficiently high velocities. Only appeared in viscous flow!!

Flow separation forms the region called ‘separated region’
[image: image21.png]Separation point Reattachment point

Separated flow region




Inside the separation region:

(low-pressure, existence of recirculating/backflows

(viscous and rotational effects are the most significant!

Important physics related to flow separation:

(’Stall’ for airplane (Recall the movie you saw at CFD-PreLab2!)

(Vortex shedding 

(Recall your work at CFD-Lab2, AOA=16°! What did you see in your velocity-vector plot at the trailing edge of the air foil?)
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[image: image23.png]alternate formation and shedding of vortices also creates a regular change in
pressure with consequent periodicity in side thrust on the cylinder. Vortex shed.
ding was the primary cause of failure of the Tacoma Narrows suspension bridge
in the state of Washington in 1940. Another, more commonplace, effect of vor.
tex shedding is the “singing” of wires in the wind.

If the frequency of the vortex shedding is in resonance with the natural fre-.
quency of the member that produces it, large amplitudes of vibration with con.
sequent large stresses can develop. Experiments show that the frequency of
shedding is given in terms of the Strouhal number S, and this in turn is a func-
tion of the Reynolds number. Here the Strouhal number is defined as

d o
s =124 , 11-
% ()
where n is the frequency of shedding of vortices from one side of cylinder, in
Hz, d is the diameter of cylinder, and V, is the free-stream velocity.

The relationship between the Strouhal number and the Reynolds number for
vortex shedding from a circular cylinder is given in Fig. 11-10. C

= nd
VO

Strouhal number, §

Re = 70!
v

FIGURE 11-10  Strouhal number versus Reynolds number for flow past a circular cylin-.
der. [After Jones (14) and Roshko (23)]

Other cylindrical and two-dfmcnsional bodies also shed vortices. CoElse-'
quently, the engineer should always be alert to vibration problems when design-
ing structures that are exposed to wind or water flow.

EXAMPLE 11-2  For the ¢ylinder and conditions of Example 11-1, at what fre-
quency will the vortices be shed?
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Fig. 7.16 Drag versus Reynolds number for nearly two-dimensional bodies.

Table 7.2
DRAG OF TWO-DIMENSIONAL BODIES AT Re = 10°

Shape Cp based on frontal area Shape Cp based on frontal area
Plate: Half-cylinder:
—_— I 20 —_— G 12
Square cylinder:

Equilateral triangle:
— <> L6 D Q 16

Half tube:
T e — D>
_ ) 23

Elliptical cylinder: Laminar Turbulent
1 —— O 1.2 0.3
2:1 O . 0.6 0.2

4:1 CD 0.35 0.15
8] ——— <> 025 0.1

H
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_1IGURE .11-11 Coefficient of drag versus Reynolds number for axisymmetric
sodies. [Data sources: Abbott (1), Breevoort (4), Freeman (9). and Rouse (24).]
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Figure 10.25.Time history of the aerodynamic drag of cars in comparison with streamlined
bodies. ( From Hucho, W. H., Janssen, L. J., Emmelmann, H. J., 1976, ““The Optimisation of
Body Details—A Method For Reducing The Aerodynamic Drag of Road Vehicles,” SAE

760185.)
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other; (reference 1,2).
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[image: image29.png]Figure 2-4. Typical naval ship stern appendages (from Kirkman,
et al., 1979)
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Magnus effect: Lift generation by spinning
Breaking the symmetry causes the lift! 
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Effect of the rate of rotation on the lift and drag coefficients of a smooth sphere:
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Lift acting on the airfoil

Lift force: the component of the net force (viscous+pressure) that is perpendicular to the flow direction

[image: image32.png](b) 15°




Variation of the lift-to-drag ratio with angle of attack:
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NACA 64(1) — 412 airfoil

100 Re=7x10°

80

Stall

-8 —4 0 4
« degrees





The minimum flight velocity:

(Total weight W of the aircraft be equal to the lift
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11.3 Effect of Compressibility on Drag: CD = CD(Re, Ma)
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speed of sound = rate at which infinitesimal

disturbances are propagated from their source into undisturbed medium


Ma < 1

subsonic

 

Ma ( 1

transonic  (=1 sonic flow)


Ma > 1

supersonic

Ma >> 1

hypersonic

CD increases for Ma ( 1 due to shock waves and wave drag

Macritical(sphere) ( .6

Macritical(slender bodies) ( 1

For U > a:  
upstream flow is not warned of approaching 

disturbance which results in the formation of shock waves across which flow properties and streamlines change discontinuously
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[image: image37.png]FIGURE 11.13

Contour plot of the drag
coefficient of the sphere
versus Reynolds and
Mach numbers.
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flow pattern





vortex wake


typical of bluff body flow





< 0.3 flow is incompressible,


                  i.e., ( ( constant
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