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Chapter 10 Approximate Solutions of the NS Equations

10.1 The Creeping Flow Approximation
See Textbook P476

10.2 Approximation for Inviscid Regions of Flow
See Textbook P481

10.3 The Irrotational Flow Approximation
See Textbook P485



57:020 Mechanics of Fluids and Transport Processes Chapter 10
Professor Fred Stern  Typed by Stephanie Schrader Fall 2005 2

10.4 Qualitative Description of the Boundary Laver

Recall our previous description of the flow-field regions for
high Re flow about slender bodies
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Tw = shear stress
Ty oC rate of strain (velocity gradient)

o
o5,

\ large near the surface where

fluid undergoes large changes to
satisfy the no-slip condition

Boundary layer theory is a simplified form of the complete
NS equations and provides 1, as well as a means of
estimating Cg,,,. Formally, boundary-layer theory
represents the asymptotic form of the Navier-Stokes
equations for high Re flow about slender bodies. As
mentioned before, the NS equations are 2" order nonlinear
PDE and their solutions represent a formidable challenge.
Thus, simplified forms have proven to be very useful.
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Near the turn of the century (1904), Prandtl put forth
boundary-layer theory, which resolved D’ Alembert’s
paradox. As mentioned previously, boundary-layer theory
represents the asymptotic form of the NS equations for high
Re flow about slender bodies. The latter requirement is
necessary since the theory is restricted to unseparated flow.
In fact, the boundary-layer equations are singular at
separation, and thus, provide no information at or beyond
separation. However, the requirements of the theory are
met in many practical situations and the theory has many
times over proven to be invaluable to modern engineering.

The assumptions of the theory are as follows:

Variable order of magnitude
u U O(1)
\% O<<L O(e) e =0/L
0
— L O(1
™ (1)
9 1/8 O(e™)
0y
\Y% 5 g’
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The theory assumes that viscous effects are confined to a
thin layer close to the surface within which there is a

dominant flow direction (x) such that u ~ U and v <<u.
However, gradients across 0 are very large in order to
satisfy the no slip condition.

Next, we apply the above order of magnitude estimates to
the NS equations.

2 2 \
Jou_ du _8p+u(8u auj

V— = +

ox oy ox |\ ox* oy’
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ov ov_ op [o*v d°v

Yox Yoy ey Mok ox? > elliptic
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Retaining terms of O(1) only results in the celebrated

boundary-layer equations 3\
du Ou op O%u
Uu—+v—=——+U
ox oy Ox @yz
»_, > parabolic
oy
ou ov
—+—=0
19,4 8}7 y,
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Some important aspects of the boundary-layer equations:
1) the y-momentum equation reduces to

P_y
oy
1e., p = p. = constant across the boundary layer

edge value, 1.e.,

from the Bernoulli equation: =
inviscid flow value!

P+ % pUZ =constant

1.e., Pe _ —pU, U
OX OX

Thus, the boundary-layer equations are solved subject to
a specified inviscid pressure distribution

2) continuity equation is unaffected
3) Although NS equations are fully elliptic, the
boundary-layer equations are parabolic and can be

solved using marching techniques

4) Boundary conditions

+ appropriate initial conditions @ x;
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There are quite a few analytic solutions to the boundary-
layer equations. Also numerical techniques are available
for arbitrary geometries, including both two- and three-
dimensional flows. Here, as an example, we consider the
simple, but extremely important case of the boundary layer
development over a flat plate.

10.5 Quantitative Relations for the Laminar Boundary
Layer

Laminar boundary-layer over a flat plate: Blasius solution
(1908) student of Prandtl

op

Note: — =0 ou ou 52u
X U—+v—=v—0-

for a flat plate ox Oy oy’

u=v=0@y=0 u=U, @y=09

We now introduce a dimensionless transverse coordinate
and a stream function, 1.e.,
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v =4/vxU_f(n)
u=NV NNy e f'=u/U,
dy om0y
oy 1 [vU
R N AT Y
ox 2\ x (ﬂ )

substitution into the boundary-layer equations yields

ff"+2f" =0 Blasius Equation

f=f'=0 @n=0 f'=1 @n=1

The Blasius equation is a 3™ order ODE which can be
solved by standard methods (Runge-Kutta). Also, series
solutions are possible. Interestingly, although simple in
appearance no analytic solution has yet been found.
Finally, it should be recognized that the Blasius solution is
a similarity solution, 1.e., the non-dimensional velocity
profile f' vs. n 1s independent of x. That is, by suitably
scaling all the velocity profiles have neatly collapsed onto a
single curve.

Now, lets consider the characteristics of the Blasius
solution:

LI
U Y

o0
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FIGURE 9.5

Velocity distribution in
laminar boundary layer.
[After Blasius (3)].

TABLE 9.1 RESULTS—& AND 7, FOR DIFFERENT VALUES OF x

v=01ft x=10ft x=2ft x=4ft x=6f

P 0.316 1.00 1.414 2.00 2.45
7o, pSf 0.552 0.174 0.123 0.087 0.071
, ft 0.005 0.016 0.022 0.031 0.039
8, in. 0.060 0.189 0.270 0.380 0.466
v U,
— = Vvs.y
U V

o0
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5x
o= value of y where u/U,, =.99
~Re
\ UgpX
Rey =
A%
f”
~ U0
2vx /U
o0
: 27 0.664 0
1.e., Cp=—07 = = — “——see below

pU_ Re, x

o0

L
Lo

_ 1.328
Re;

JRe,
Nt

A%

Other:

* 5 u
5 =[l1-- ldy=1.7208
0 U

o0

X

+JRe,

measure of displacement of inviscid flow to due

boundary layer

displacement thickness
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0 u |u X :
O0=[|1-— |—dy=0.664——— momentum thickness
0 U © U © +JRe X

measure of loss of momentum due to boundary layer

*

H = shape parameter = 6522.5916
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10.6 Quantitative Relations for the Turbulent Boundary
Layer

Description of Turbulent Flow

7' &

’?
A AA S / ng §;§ o

AN

L

Ay

*y

©
¢

V and p are random functions of time in a turbulent flow
The mathematical complexity of turbulence entirely
precludes any exact analysis. A statistical theory is well
developed; however, it i1s both beyond the scope of this
course and not generally useful as a predictive tool. Since
the time of Reynolds (1883) turbulent flows have been
analyzed by considering the mean (time averaged) motion
and the influence of turbulence on it; that is, we separate
the velocity and pressure fields into mean and fluctuating
components

u=u+u’ p=p+p’
V= (,_4_ \'4 and for compressible flow
wW=w+Ww p=p+p ' and T=T+T'
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where (for example)

and t;sufficiently large
that the average is
independent of time

Thus by definition u’' =0, etc. Also, note the following
rules which apply to two dependent variables fand g

fog=f-g
g af L _ f=(u, v, w,p)
£:£ J.de:Ide S:(X7Y’Z’t)

The most important influence of turbulence on the mean
motion is an increase in the fluid stress due to what are
called the apparent stresses. Also known as Reynolds
stresses:

’

_ 11
12 1t 1t .
—pu —puv —puw Symmetric
d
= — pu'V’ — pV’2 — pv’w' 2" order
1! 1! 12 tensor
—puw —PVW —PpW
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The mean-flow equations for turbulent flow are derived by
substituting V = i + V' into the Navier-Stokes equations
and averaging. The resulting equations, which are called
the Reynolds-averaged Navier-Stokes (RANS) equations
are:

Continuity V-V=0 ie.V-V=0and V-V' =0

Momentum pg+pi(u§u3):—pglz—V1;+uvzi
Dt OX ;
DV .
or —=—pgk-Vp+V- 1.
P Dt Pg p i
U =u X1 =X
ou. ou. L=V X=Yy
Tj =M L —puju; WL=W X3=7Z
OX; OX;| "
Comments: T

ij
1) equations are for the mean flow
2) differ from laminar equations by Reynolds stress

terms = u;u’

3) influence of turbulence is to transport momentum
from one point to another in a similar manner as
viscosity

4) since u;u’ are unknown, the problem is

indeterminate: the central problem of turbulent flow
analysis is closure!

4 equations and 4 + 6 = 10 unknowns
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Hot-wire measurements showing turbulent veiocity fluctuations: (a) typical FIGURE 5-36

trace of a single velocity component in & turbulent flow; (b) trace showing

intermittent turbulence at the edge of a jet.
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Flat-plate measurements of the fluctuating velocities u’ (streamwise),
(normal), and @’ (lateral) and the turbulent shear u'v’. [After Klebanoff (1955).]
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FIGURE 537

The phenomenon of intermittency in a turbulent boundary 1sver: (a) measured
intermittency factors [afler Klebanoff (1955}]; (b) the superlayer interface be-
tween turbulent and nonturbulent fluid. ’
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Fig. 18.3. Measurement of fluctuating tur-
bulent components in a wind tunnel,
at maximum velocity U = 100 cm/sec
after Reichardt {41]

Root quare of itudinal i Vﬁ,

Fig. 18.4. Measurement of fluctuating com-
ponents in a channel, after Reichardt [41]

The product ¥’ v, the shearing stress 7/¢, and the cor-
relation coefficient v

transverse fluctuation )/Fy mean velocity #
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2-D Boundary-layer Form of RANS equations

ou OV _

ox Oy

ou du_ d(p.) O (4

u8—+V5:—a—X — V—z—g(UV)
X p 0y

requires modeling

Turbulence Modeling
Closure of the turbulent RANS equations require the

determination of —pu'v’, etc. Historically, two approaches

were developed: (a) eddy viscosity theories in which the
Reynolds stresses are modeled directly as a function of
local geometry and flow conditions; and (b) mean-flow
velocity profile correlations which model the mean-flow
profile itself. The modern approaches, which are beyond
the scope of this class, involve the solution for transport
PDE’s for the Reynolds stresses which are solved in
conjunction with the momentum equations.

(a) eddy-viscosity: theories
(mainly used with differential methods)

— . ou In analogy with the laminar viscous
—puv =l - '
oy stress, 1.e., T, o« mean-flow rate of strain

The problem is reduced to modeling ., 1.e.,
L, = W(x, flow at hand)

Various levels of sophistication presently exist in
modeling L
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w=pV.L

turbulent
velocity scale

The total stress 1s

Tiotal = (H+ My )_

molecular
viscosity

Mixing-length theory

—pu'v'=c¢cp

' h
Y~ turbulent where V, and L, are

based an large scale

length scale .
8 turbulent motion

oy

eddy viscosity
(for high Re flow p, >> )

(Prandtl, 1920)

—2 [—2 based on kinetic
u Vv theory of gases

—2 ou

=, —
"oy

—2€6

/1 and / , are mixing lengths

which are analogous to
molecular mean free path,
u but much larger

" oy

= —puV '=p/

Known as a zero /
equation model since

no additional PDE’s

are solved, only an

algebraic relation

28u8u
oy | Oy

= ﬁ(ﬂ/

= f(boundary layer, jet, wake, etc.)

distance across shear layer
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Although mixing-length theory has provided a very useful
tool for engineering analysis, it lacks generality. Therefore,
more general methods have been developed.

One and two equation models

_ Cpk?
€

¢

C = constant

k* = turbulent kinetic energy
2 2

2
=u?=u?+vi+w

¢ = turbulent dissipation rate

Governing PDE’s are derived for k and € which contain
terms that require additional modeling. Although more
general then the zero-equation models, the k-¢ model also
has definite limitation; therefore, recent work involves the
solution of PDE’s for the Reynolds stresses themselves.
Difficulty is that these contain triple correlations that are
very difficult to model.
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(b) mean-flow velocity profile correlations
(mainly used with integral methods)
As an alternative to modeling the Reynolds stresses one can
model mean flow profile directly. For simple 2-D flows
this approach is quite food and will be used in this course.
For complex and 3-D flows generally not successful.
Consider the shape of turbulent velocity profiles.

!

Outer
turbulent
layer

u(x, y)

Overlap layer
¥ Viscous

— wall layer
d 0 v

(a) b)

Fig. 6.8 Typical velocity and shear distributions in turbulent flow near a wall: (a) shear;
(b) velocity. (

Note that very near the wall Tj,pin. must dominate since
—pu,u;= 0 at the wall (y = 0) and in the outer part

turbulent stress will dominate. This leads to the three layer
concept:

Inner layer:  viscous stress dominates

Outer layer: turbulent stress dominates

Overlap layer: both types of stress important

1) Inner layer (Prandtl, 1930)
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u = f(y, tw, p, y) note: not f(0)
From dlmer}s10nal ut = f(y+ ) law-of-the-wall
analysis
+_ o+
u-=y
where: u =
u

very near the wall:

du N
T ~ Ty ~ constant = pL— — u=c¢cy O u =y
dy
2) Outer layer (Karmen, 1933)
(Ue o u)outer - g(s’ TW b p’ Y)
note: independent of u and actually also depends on j—p
X

1 %
analysis u

3) Overlap layer (Milliken, 1937)
In order for the inner and outer layers to merge smooth

L U. - :
From dimensional e ~U _ f(%j velocity defect law
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u

— = lln y' o+ log-law
UK

!

41 5
k and B from experiments and independent of dp/dx

FIGURE 10.5
Velocity distribution for
mooth pipes. [After 10,000 -
Schlichting (36)]
1,000 -
Range of
experimental data for
smooth pipes
2 oot
u Uxy
7 =57510gp =~ +55
[Eq. (10-19)}
116 . .
101
\ U Usy
e = v
[Eq. (10-18))
1 L 1 1
0 10 20 30
u
Ua
FIGURE 9.9
Velocity distribution in a
turbulent boundary
layer. Velocity
defect
1000 law
Range of experimental data applies
"% “l‘ =5.75 log 1:-' +5.56 ’
2
5
2 Logarithmic
£ velocity
& 100 - distribution
8
%
2
ﬁ L /4 Law of
* P the wall
i[> 4
11.84 i
101K g
5K ' .
Lr-1184
~ Y Viscous
ui. === ‘ sublayer
1 1 l | 1

0 10 20 30

u Ny )
i (relative velocity)
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el 700
Velocity distribution in a
turbulent boundary
; 600
layer-linear scales.
500
400
Yila
=
u
200 iy Logarithmic
velocity
distribution
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sublayer
Buffer zone §
~ - e e
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FIGURE 9.12 10
Velocity-defect law for
boundary layers. [After
Rouse (10)]. 0.8
0.6
y
a
0.4
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Note that the y* scale is logarithmic and thus the inner
law only extends over a very small portion of 6

Inner law region < .20

And the log law encompasses most of the boundary-layer.
Thus as an approximation one can simply assume

1_llﬂy‘f‘ls *

¥ —

u K + _yu

is valid all across the shear layer. This is the approach used
in this course for turbulent flow analysis. The approach is a
good approximation for simple and 2-D flows (pipe and flat
plate), but does not work for complex and 3-D flows.

0.8 —~

06 Pressure gradients:

Strong favorable:.
Herring (1967)

-QIQI

Flate plate:
0.4 Wieghardt (1944)
Mild adverse:
Bradshaw (1966)
Strong adverse:
0.2 Ludwieg {1949)
Very strong adverse:
s Schubauer {1960}
e _ eparating flow:
. T =-240n Moses (1964)
) L 1

0 0.2 0.4 0.6 08 1.0

c»|~<

FIGURE 6-4

Expgrimental turbulent-boundary-layer velocity profiles for various pressure
gradients.
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tou” =221 aty* = 156

60
,' -Separating flow
I {no discernible overlap iayer)
50 !
t
| Very strong adverse:
# ry ng \AA
- a
40 - !
Strong adverse: 4
," IR
13l I Mild adverse: 4 oo
1 30k I TR e e
+ , A
3 o
20
. e Strong favorable
1 v Flat plate
10 5o Infy*) +55 {zero gradient)
1 . — | nnEr law
Fyri In{y*) +5.0
0 - 3 i
10 100 1,000 10,000

U
4 v

FIGURE 6-5
Replot of the velocity profiles of Fig. 6-4 using inner-law variables y* and u™*

Slight “wake'’ 1 .

25

V4
o >

Linear /
sublayer:

+ + /
ut=y /

Logarithmic overlap: /
-

Eq. (6-52a) .
Spalding’s law of the wall:

Eq. (6-62) (k=0.4,8=55)

Data of Lindgren (1965):
Y Upye g= 6,100

AN

v = 10,000
Y)\' o =27,000
» = 49,000
i 1 !
AREET 100 1,000
{ :
7 . y+ SV_V’
N v

FIGURE 6-6
Comparison of Spalding’s inner-law expression with the pipe-flow data of

Lindgren (1965).
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Momentum Integral Analysis

Background: History and Modern Approach: FD

To obtain general momentum integral relation which is
valid for both laminar and turbulent flow

oo For flat plate or 6 for general case

[(momentum equation +(u — v) continuity dy

y=0
Twz :lcf:@+(2+H)Ed_U _d_p:pUd_U
pU” 2 dx U dx dx dx
flat plate equation du =0
dx
% u u :
0=] —(1 — —jdy momentum thickness
oU U
6*
H = r shape parameter
« O u . .
o =] (1 — doy displacement thickness
0

Can also be derived by CV analysis as shown next for flat
plate boundary layer.
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Momentum Equation Applied to the Boundary Laver

- Do . y=h+ o0*=streamline
starts in uniform flow
~ merges with 0 at 3
=3 =\%
) ‘/:‘/ %d\ﬁM C> "“-'3\
o M VXePWY drt..r /
4 //////é’///// @xk
Steady & VER wadsia S )
p = constant
neglect g
v <<u=u, = p = constant
re.,-Vp=0
Cv=1273,4
X
—D=drag=b|t dx pressure force = 0 for v << U,
force on CV wall shear stress u~ U,

S>F =-D= pju( dA)+pju(V dA)
=pl-U2bh )+ pbju’dy
3

0
D(x) = pUZbh —pb[u’dy
0

next eliminate h using continuity
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0
U_bh =pbjud
p 0 pguyV\

depends on u(y)
)

U h=[udy
0

0 o
D(x) = pbU, [udy - pbJu’dy
0 0

=pbJu(U, —u)dy
0
D 2%y u
CD ZI—ZEIU—(I_U—jdy
—pUZL  ~0 %o 0
2 N

0 = momentum thickness
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X
b[t,dx
D . 20
Cp = = =
1 1 L

“pU2A  ~pU?bL
SPUA pPUs

| 1 Cw (x)dx =26(x)
0~ U2
) PLo
I, |_db
2( 1 (2| dx
—pU
’ P,
O _ a6 c¢ = local skin friction coefficient
2 dx

momentum integral relation for
flat plate boundary layer

o
o 11(1_%@
ou u

(o)
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Approximate solution for a laminar boundary-layer

Assume cubic polynomial for u(y)

UL=A+By+Cy2 + Dy’

o0

4= 5_ =0 y=0 A=0 B:ég
oy ! 2
= U, @ =0 y=9o C=0 D=-'g
oy % )
3
1.e £:§X+l(zj uy:U(i éy_j U_3
U 28 288 228 ) , 20
Twz = le _d momentum integral equation for dp _ 0
pU 2 dx dx
5
pU 26 dx U U
—
ooyl
w Mdy

Compare with
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Exact Blassius

ie, = 5= X X 7% 4
~JRe, Re,
2 2
T = 323pV 332pU 3000
+JRe, Re,
.646 .664
Cf =
Re, Re,
C._ 1.29 1.33
' JJReyp JJRep
1 L
Crmp o Jru (ki
—pU?bL?
2
span length

—~—

total skin-friction drag coefficient
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Approximate solution Turbulent Boundary-Laver

Re;~3 X 10° for a flat plate boundary layer
Regi ~ 500,000

as was done for the approximate laminar flat plate
boundary-layer analysis, solve by expressing c; = ¢¢(0) and
0 = 0(9) and integrate, i.e.

assume log-law valid across entire turbulent boundary-layer

sk

i* _ lln& +B neglect laminar sub layer
u KV and velocity defect region
aty=0,u=U

E* 1 In ou_ +B

u

K Vv
\ c 1/2
Reg)( f)
5 /2 e \2
or (—j —2.44ln{ReS[fJ }LS
Ce 2

ce =.02 Reﬁ_l/6 power-law fit
Next, evaluate /

> ¢t (0)
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do d3u u
B e R ¥
dx dxoU U

can use log-law or more simply a power law fit

1/7

u_ (zj Note: can not be

U \o \ used to obtain c¢ (0)
since T, —> ©

e:léze(s) )

72
| ,d® 7 _,do
— T, =Cf—pU" " =pU" —=—pU”" —
vEEPE TP TP @
Re; '° = 97290
dx
or S _ 16Re "’ 1.e., much faster
X growth rate than
laminar
8 oc x*7 almost linear boundary layer
~.027
Cr = Re!/7
031 7
Cr = :_Cf(L)

- Re!” 6
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Alternate forms given in text depending on experimental

information and power-law fit used, etc. (i.e., dependent on
Re range.)

Some additional relations given in texts for larger Re are as
follows:

Total 455 —~1700
shear-stress Ce = 258 R Re > 10’
coefficient (loglo Re| ) CL
o
[ c;(.98logRe, —.732)
Local 93
shear-stress Cr = (2 logRe, —.65 )
coefficient *

0.0100

0.0090
0.0080

0.0070
0.0060

0.0050 Average shear stress coefficient for

/completely turbulent boundary layer
0.0040
Laminar boundary layer

a 0.00301 C = 0455 _ 1700
’ / I (log oRey )58
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Finally, a composite formula that takes into account both
the initial laminar boundary-layer (with translation at
Recg = 500,000) and subsequent turbulent boundary layer
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