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Chapter 10 Approximate Solutions of the NS Equations  
 
 
 
10.1 The Creeping Flow Approximation 
 See Textbook P476 
 
10.2 Approximation for Inviscid Regions of Flow 
 See Textbook P481 
 
10.3 The Irrotational Flow Approximation 
 See Textbook P485 
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10.4 Qualitative Description of the Boundary Layer  
 
Recall our previous description of the flow-field regions for 
high Re flow about slender bodies 
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τw = shear stress 
 
τw ∝ rate of strain (velocity gradient) 
 

 =
0yy

u

=∂
∂

µ  

 
    
    large near the surface where  

fluid undergoes large changes to 
satisfy the no-slip condition 
 
 
 

Boundary layer theory is a simplified form of the complete 
NS equations and provides τw as well as a means of 
estimating Cform.  Formally, boundary-layer theory 
represents the asymptotic form of the Navier-Stokes 
equations for high Re flow about slender bodies.  As 
mentioned before, the NS equations are 2nd order nonlinear 
PDE and their solutions represent a formidable challenge.  
Thus, simplified forms have proven to be very useful. 
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Near the turn of the century (1904), Prandtl put forth 
boundary-layer theory, which resolved D’Alembert’s 
paradox.  As mentioned previously, boundary-layer theory 
represents the asymptotic form of the NS equations for high 
Re flow about slender bodies.  The latter requirement is 
necessary since the theory is restricted to unseparated flow.  
In fact, the boundary-layer equations are singular at 
separation, and thus, provide no information at or beyond 
separation.  However, the requirements of the theory are 
met in many practical situations and the theory has many 
times over proven to be invaluable to modern engineering. 
 
 
The assumptions of the theory are as follows:  
 
  Variable     order of magnitude   
 u    U   O(1) 
 v    δ<<L  O(ε)  ε = δ/L 

      
x∂
∂     L   O(1) 

      
y∂
∂     1/δ   O(ε-1) 

 ν    δ2   ε2  
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The theory assumes that viscous effects are confined to a 
thin layer close to the surface within which there is a 
dominant flow direction (x) such that u ∼ U and v << u.  
However, gradients across δ are very large in order to 
satisfy the no slip condition. 
 
Next, we apply the above order of magnitude estimates to 
the NS equations. 
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Retaining terms of O(1) only results in the celebrated 
boundary-layer equations 
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Some important aspects of the boundary-layer equations: 
1) the y-momentum equation reduces to 
 

0
y
p
=

∂
∂  

 
 i.e.,  p = pe = constant across the boundary layer 
 

from the Bernoulli equation:    

=ρ+ 2
ee U

2
1p constant 

i.e.,  
x

UU
x
p e

e
e

∂
∂

ρ−=
∂
∂  

 
Thus, the boundary-layer equations are solved subject to 
a specified inviscid pressure distribution 

 
2) continuity equation is unaffected 
 
3) Although NS equations are fully elliptic, the 

boundary-layer equations are parabolic and can be 
solved using marching techniques 

 
4) Boundary conditions   

 
u = v = 0  y = 0 
 
u = Ue  y = δ 
 

+ appropriate initial conditions @ xi 

edge value, i.e., 
inviscid flow value! 
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There are quite a few analytic solutions to the boundary-
layer equations.  Also numerical techniques are available 
for arbitrary geometries, including both two- and three-
dimensional flows.  Here, as an example, we consider the 
simple, but extremely important case of the boundary layer 
development over a flat plate. 
 
 
 
10.5 Quantitative Relations for the Laminar Boundary 
Layer 
 
Laminar boundary-layer over a flat plate:  Blasius solution 
(1908)  student of Prandtl 
 

  0
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∂

 

 

  u = v = 0 @ y = 0  u = U∞ @ y = δ 
 
 
We now introduce a dimensionless transverse coordinate 
and a stream function, i.e., 
 

  
δ

∝
ν

=η ∞ y
x

Uy  

 

Note: 
x
p
∂

∂
 = 0 

for a flat plate 
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  ( )ην=ψ ∞ fxU  

 ( )η′=
∂
η∂

η∂
ψ∂

=
∂
ψ∂

= ∞fU
yy

u   ∞=′ U/uf  

 

 ( )ff
x
U

2
1

x
v −′η

ν
=

∂
ψ∂

−= ∞  

   
substitution into the boundary-layer equations yields 
 
   0f2ff =′′′+′′   Blasius Equation 
 
 0ff =′=    @ η = 0  1f =′    @ η = 1 
 
The Blasius equation is a 3rd order ODE which can be 
solved by standard methods (Runge-Kutta).  Also, series 
solutions are possible.  Interestingly, although simple in 
appearance no analytic solution has yet been found.  
Finally, it should be recognized that the Blasius solution is 
a similarity solution, i.e., the non-dimensional velocity 
profile f′ vs. η is independent of x.  That is, by suitably 
scaling all the velocity profiles have neatly collapsed onto a 
single curve. 
 
Now, lets consider the characteristics of the Blasius 
solution: 

  
∞U

u  vs. y 
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V
U

U
v ∞
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 vs. y 
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Re
x5

=δ    value of y where u/U∞  = .99 
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=
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  see below 
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     =
LRe

328.1  
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⎛
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∞0 x

*

Re
x7208.1dy

U
u1  displacement thickness 

 
measure of displacement of inviscid flow to due 
boundary layer 
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∫ =⎟⎟
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⎞
⎜⎜
⎝

⎛
−=θ

δ

∞∞0 xRe
x664.0dy

U
u

U
u1     momentum thickness 

 
measure of loss of momentum due to boundary layer 

 

H = shape parameter = 
θ
δ*

=2.5916 
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10.6 Quantitative Relations for the Turbulent Boundary  
Layer 

 
Description of Turbulent Flow 

V and p are random functions of time in a turbulent flow 
The mathematical complexity of turbulence entirely 
precludes any exact analysis.  A statistical theory is well 
developed; however, it is both beyond the scope of this 
course and not generally useful as a predictive tool.  Since 
the time of Reynolds (1883) turbulent flows have been 
analyzed by considering the mean (time averaged) motion 
and the influence of turbulence on it; that is, we separate 
the velocity and pressure fields into mean and fluctuating 
components 
 
 uuu ′+=     ppp ′+=  
 vvv ′+=     and for compressible flow 
 www ′+=    TTTand ′+=ρ′+ρ=ρ  
 



57:020 Mechanics of Fluids and Transport Processes                                                                 Chapter 10 
Professor Fred Stern    Typed by Stephanie Schrader   Fall 2005  13

where (for example) 
 

 ∫=
+ 10

0

tt

t1
udt

t
1u    

 
Thus by definition 0u =′ , etc.  Also, note the following 
rules which apply to two dependent variables f and g 
 

 ff =  gfgf +=+  
 
 gfgf ⋅=⋅  
 

 
s
f

s
f

∂
∂

=
∂
∂   ∫=∫ dsffds  

 
The most important influence of turbulence on the mean 
motion is an increase in the fluid stress due to what are 
called the apparent stresses.  Also known as Reynolds 
stresses: 
 

jiij uu ′′ρ−=τ′  
 
  2u′ρ−      vu ′′ρ−   wu ′′ρ−  
 = vu ′′ρ−      2v′ρ−   wv ′′ρ−  
  wu ′′ρ−      wv ′′ρ−  2w′ρ−  

f = (u, v, w, p) 
s = (x, y, z, t) 

Symmetric 
2nd order 

tensor

and t1sufficiently large 
that the average is 
independent of time 
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The mean-flow equations for turbulent flow are derived by 
substituting VVV ′+=  into the Navier-Stokes equations 
and averaging.  The resulting equations, which are called 
the Reynolds-averaged Navier-Stokes (RANS) equations 
are: 
 
Continuity 0Vand0V.e.i0V =′⋅∇=⋅∇=⋅∇  
 

Momentum ( ) Vpk̂guu
xDt

VD 2
ji

j
∇µ+∇−ρ−=′′

∂
∂

ρ+ρ  

 or  ijpk̂g
Dt

VD
τ⋅∇+∇−ρ−=ρ  

 

   ji
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i
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x
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x
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⎥
⎥
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⎤

⎢
⎢
⎣

⎡

∂

∂
+

∂
∂

µ=τ  

Comments:         ijτ′  
1) equations are for the mean flow 
2) differ from laminar equations by Reynolds stress 

terms = jiuu ′′  
3) influence of turbulence is to transport momentum 

from one point to another in a similar manner as 
viscosity 

4) since jiuu ′′  are unknown, the problem is 
indeterminate: the central problem of turbulent flow 
analysis is closure! 

 
4 equations and 4 + 6 = 10 unknowns 

u1 = u x1 = x 
u2 = v x2 = y 
u3 = w x3 = z 
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2-D Boundary-layer Form of RANS equations 
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      requires modeling 
 
Turbulence Modeling 
Closure of the turbulent RANS equations require the 
determination of vu ′′ρ− , etc.  Historically, two approaches 
were developed: (a) eddy viscosity theories in which the 
Reynolds stresses are modeled directly as a function of 
local geometry and flow conditions; and (b) mean-flow 
velocity profile correlations which model the mean-flow 
profile itself.  The modern approaches, which are beyond 
the scope of this class, involve the solution for transport 
PDE’s for the Reynolds stresses which are solved in 
conjunction with the momentum equations. 
 

(a) eddy-viscosity: theories  
(mainly used with differential methods) 

  
y
uvu t ∂

∂
µ=′′ρ−   

The problem is reduced to modeling µt, i.e., 
  µt = µt(x, flow at hand)  

 
Various levels of sophistication presently exist in 
modeling µt 

In analogy with the laminar viscous 
stress, i.e., τt ∝ mean-flow rate of strain 
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ttt LVρ=µ  
 
  
 
The total stress is 

  ( )
y
u

ttotal ∂
∂

µ+µ=τ  

 
 
 
 
Mixing-length theory (Prandtl, 1920) 
 

  22 vucvu ′′ρ=′′ρ−  
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∂
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 ⇒ 
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∂
∂

∂
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ρ=′′ρ−  

 
 
    ( )y=  
 

   = f(boundary layer, jet, wake, etc.) 

turbulent 
velocity scale 

turbulent 
length scale 

molecular 
viscosity 

eddy viscosity  
(for high Re flow µt >> µ) 

based on kinetic 
theory of gases 

21 and are mixing lengths 
which are analogous to 
molecular mean free path, 
but much larger 

Known as a zero 
equation model since 
no additional PDE’s 
are solved, only an 
algebraic relation 

distance across shear layer 

where Vt and Lt are 
based an large scale 
turbulent motion 
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Although mixing-length theory has provided a very useful 
tool for engineering analysis, it lacks generality.  Therefore, 
more general methods have been developed. 
 
One and two equation models 
 

   
ε
ρ

=µ
2

t
kC  

 
 C = constant 
 
 k2 = turbulent kinetic energy 
     = 2222 wvuu ′+′+′=′  
 
 ε = turbulent dissipation rate 
 
 
Governing PDE’s are derived for k and ε which contain 
terms that require additional modeling.  Although more 
general then the zero-equation models, the k-ε model also 
has definite limitation; therefore, recent work involves the 
solution of PDE’s for the Reynolds stresses themselves.  
Difficulty is that these contain triple correlations that are 
very difficult to model. 
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(b) mean-flow velocity profile correlations 
(mainly used with integral methods) 

As an alternative to modeling the Reynolds stresses one can 
model mean flow profile directly.  For simple 2-D flows 
this approach is quite food and will be used in this course.  
For complex and 3-D flows generally not successful.  
Consider the shape of turbulent velocity profiles.   

 
Note that very near the wall τlaminar must dominate since  

jiuuρ− = 0 at the wall (y = 0) and in the outer part 
turbulent stress will dominate.  This leads to the three layer 
concept: 
 
 
Inner layer:  viscous stress dominates 
 
Outer layer: turbulent stress dominates 
 
Overlap layer: both types of stress important 
 

1) Inner layer (Prandtl, 1930) 
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u = f(µ, τw, ρ, y)  note: not f(δ) 

 
   ( )++ = yfu    law-of-the-wall 
 

    u+ = y+ 
 

where:  *u
uu =+  

 
   u* = friction velocity = ρτ /w  
 

   
ν

=+
*yuy  

 
very near the wall: 

τ ∼ τw ∼ constant = 
dy
du

µ        ⇒    cyu =       or      u+ = y+ 

 
2) Outer layer (Karmen, 1933) 

 
( ) ( )y,,,guU woutere ρτδ=−  

  note: independent of µ and actually also depends on 
dx
dp  

    

   ⎟
⎠
⎞

⎜
⎝
⎛
δ

=
− yf

u
uU

*
e  velocity defect law 

3) Overlap layer (Milliken, 1937) 
In order for the inner and outer layers to merge smooth 

From dimensional 
analysis 

From dimensional 
analysis 
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   Byln1
u
u

* +
κ

= +   log-law 

 
    .41  5 
κ and B from experiments and independent of dp/dx 
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Note that the y+ scale is logarithmic and thus the inner 
law only extends over a very small portion of δ 

 
  Inner law region < .2δ 
 
And the log law encompasses most of the boundary-layer.  
Thus as an approximation one can simply assume 
 

  Byln1
u
u

* +
κ

=  

 
is valid all across the shear layer.  This is the approach used 
in this course for turbulent flow analysis.  The approach is a 
good approximation for simple and 2-D flows (pipe and flat 
plate), but does not work for complex and 3-D flows. 
 
 

ν
=

ρτ=

+

+

*
w

yuy

/u
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For flat plate or δ for general case 

Momentum Integral Analysis 
 
Background:  History and Modern Approach: FD 
 
To obtain general momentum integral relation which is 
valid for both laminar and turbulent flow 
 

( )dycontinuity)vu(equationmomentum
0y
∫ −+
∞

=
 

 

( )
dx
dU

U
H2

dx
dc

2
1

U f2
w θ

++
θ

==
ρ
τ   

dx
dUU

dx
dp

ρ=−  

   flat plate equation 0
dx
dU

=  

 

∫ ⎟
⎠
⎞

⎜
⎝
⎛ −=θ

δ

0
dy

U
u1

U
u   momentum thickness 

 

θ
δ

=
*

H     shape parameter 

 

dy
U
u1

0

* ∫ ⎟
⎠
⎞

⎜
⎝
⎛ −=δ

δ
  displacement thickness 

 
 
Can also be derived by CV analysis as shown next for flat 
plate boundary layer. 
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y = h + δ*= streamline  
starts in uniform flow 

   merges with δ at 3 

Steady 
ρ = constant 
neglect g 
v << u = uo ⇒ p = constant 
i.e., -∇p = 0 

Momentum Equation Applied to the Boundary Layer 
 
 
 
 
 
 
 
 
 
 
 
 
CV = 1, 2, 3, 4 
 

∫ τ==−
x

0
wdxbdragD         pressure force = 0 for v << Uo 

force on CV  wall shear stress      u ∼ Uo 
 
 

( ) ( )∫ ⋅ρ+∑ ∫ ⋅ρ=−=
31

x dAVudAVuDF  

 
   = ( ) ∫ρ+−ρ

3

22
o dyubbhU  

 

∫ρ−ρ=
δ

0

22
o dyubbhU)x(D  

 
 
next eliminate h using continuity 
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             θ = momentum thickness 
 
 
  

  
L
2CD
θ

=  

   
 
 

depends on u(y) 
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=
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=    cf = local skin friction coefficient 

 
    momentum integral relation for  

flat plate boundary layer 
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Approximate solution for a laminar boundary-layer 
 
Assume cubic polynomial for u(y) 
 

32 DyCyByA
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+++=
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∂
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⎛
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∫ ⎟
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        Compare with 
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⎞
⎜⎜
⎝

⎛
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=
=

2
3Uy

2
3

2
3Uu

0y

2

y  



57:020 Mechanics of Fluids and Transport Processes                                                                 Chapter 10 
Professor Fred Stern    Typed by Stephanie Schrader   Fall 2005  30

          Exact Blassius 

i.e.,  
xRe
x65.4

=δ     
xRe

x5      7% ↓ 

 

  
x

2

w Re
V323. ρ

=τ     
x

2

Re
U332. ρ      3%↓  

  

  
x

f Re
646.c =     

xRe
664.  

 

  
L

f Re
29.1C =     

LRe
33.1  

 

( )∫ τ
ρ

=
L

0
w

2
f dxx

bLU
2
1

1C  

   span length 
 
total skin-friction drag coefficient
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Approximate solution Turbulent Boundary-Layer 
 
  Ret ∼ 3 X 106 for a flat plate boundary layer 
        Recrit ∼ 500,000 

  
dx
d

2
cf θ

=      

 
as was done for the approximate laminar flat plate 
boundary-layer analysis, solve by expressing cf = cf (δ) and 
θ = θ(δ) and integrate, i.e. 
 
assume log-law valid across entire turbulent boundary-layer 
 

Byuln1
u
u *

* +
νκ

=    

 
at y = δ, u = U 
 

Buln1
u
U *

* +
ν
δ

κ
=  

     
2/1

f

2
cRe ⎟
⎠
⎞

⎜
⎝
⎛

δ  

 

or 5
2
cReln44.2

c
2 2/1

f
2/1

f
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
δ  

           
 6/1

f Re02.c −
δ≅  power-law fit 

Next, evaluate 

neglect laminar sub layer 
and velocity defect region 

cf (δ) 
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  ∫ ⎟
⎠
⎞

⎜
⎝
⎛ −=

θ δ

0
dy

U
u1

U
u

dx
d

dx
d  

 
can use log-law or more simply a power law fit 

7/1y
U
u

⎟
⎠
⎞

⎜
⎝
⎛
δ

=  

 

( )δθ=δ=θ
72
7  

 

⇒  
dx
dU

72
7

dx
dUU

2
1c 222

fw
δ

ρ=
θ

ρ=ρ=τ  

 

dx
d72.9Re 6/1 δ

=−
δ  

 

or 7/1
xRe16.

x
−=

δ  

 
7/6x∝δ  almost linear 

 

7/1
x

f Re
027.c =  

 

( )LC
6
7

Re
031.C f7/1

L
f ==  

Note: can not be 
used to obtain  cf (δ) 
since τw → ∞ 

i.e., much faster 
growth rate than 
laminar 
boundary layer  



57:020 Mechanics of Fluids and Transport Processes                                                                 Chapter 10 
Professor Fred Stern    Typed by Stephanie Schrader   Fall 2005  33

Alternate forms given in text depending on experimental 
information and power-law fit used, etc.  (i.e., dependent on 
Re range.) 
 
Some additional relations given in texts for larger Re are as 
follows: 

   
( ) L

58.2
L10

f Re
1700

Relog
455.C −

=   Re > 107 

 

   ( )732.Relog98.c
L Lf −=
δ  

 
   ( ) 3.2

xf 65.Relog2c −−=  
 
 
 
 
 
 
 
 
 
 
 
Finally, a composite formula that takes into account both 
the initial laminar boundary-layer (with translation at  
ReCR = 500,000) and subsequent turbulent boundary layer 

is 
L

5/1
L

f Re
1700

Re
074.C −=   105 < Re < 107

 

Total 
shear-stress 
coefficient 

Local  
shear-stress 
coefficient 


