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Chapter 10 Approximate Solutions of the NS Equations 
10.1 The Creeping Flow Approximation


See Textbook P476

10.2 Approximation for Inviscid Regions of Flow


See Textbook P481

10.3 The Irrotational Flow Approximation


See Textbook P485

10.4 Qualitative Description of the Boundary Layer 
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Recall our previous description of the flow-field regions for high Re flow about slender bodies
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(w = shear stress

(w ( rate of strain (velocity gradient)
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large near the surface where 

fluid undergoes large changes to satisfy the no-slip condition

Boundary layer theory is a simplified form of the complete NS equations and provides (w as well as a means of estimating Cform.  Formally, boundary-layer theory represents the asymptotic form of the Navier-Stokes equations for high Re flow about slender bodies.  As mentioned before, the NS equations are 2nd order nonlinear PDE and their solutions represent a formidable challenge.  Thus, simplified forms have proven to be very useful.

Near the turn of the century (1904), Prandtl put forth boundary-layer theory, which resolved D’Alembert’s paradox.  As mentioned previously, boundary-layer theory represents the asymptotic form of the NS equations for high Re flow about slender bodies.  The latter requirement is necessary since the theory is restricted to unseparated flow.  In fact, the boundary-layer equations are singular at separation, and thus, provide no information at or beyond separation.  However, the requirements of the theory are met in many practical situations and the theory has many times over proven to be invaluable to modern engineering.

The assumptions of the theory are as follows: 
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The theory assumes that viscous effects are confined to a thin layer close to the surface within which there is a dominant flow direction (x) such that u ( U and v << u.  However, gradients across ( are very large in order to satisfy the no slip condition.
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Next, we apply the above order of magnitude estimates to the NS equations.
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[image: image155.png]Retaining terms of O(1) only results in the celebrated boundary-layer equations
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Some important aspects of the boundary-layer equations:

1) the y-momentum equation reduces to
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i.e.,

p = pe = constant across the boundary layer

[image: image157.png][image: image158.png]
from the Bernoulli equation:
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Thus, the boundary-layer equations are solved subject to a specified inviscid pressure distribution

2) continuity equation is unaffected

3) Although NS equations are fully elliptic, the boundary-layer equations are parabolic and can be solved using marching techniques

4) [image: image159.png]Boundary conditions
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There are quite a few analytic solutions to the boundary-layer equations.  Also numerical techniques are available for arbitrary geometries, including both two- and three-dimensional flows.  Here, as an example, we consider the simple, but extremely important case of the boundary layer development over a flat plate.

10.5 Quantitative Relations for the Laminar Boundary Layer
[image: image160.png]Laminar boundary-layer over a flat plate:  Blasius solution (1908)

student of Prandtl
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u = v = 0
@ y = 0

u = U(
@ y = (
We now introduce a dimensionless transverse coordinate and a stream function, i.e.,
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substitution into the boundary-layer equations yields
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Blasius Equation
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The Blasius equation is a 3rd order ODE which can be solved by standard methods (Runge-Kutta).  Also, series solutions are possible.  Interestingly, although simple in appearance no analytic solution has yet been found.  Finally, it should be recognized that the Blasius solution is a similarity solution, i.e., the non-dimensional velocity profile f( vs. ( is independent of x.  That is, by suitably scaling all the velocity profiles have neatly collapsed onto a single curve.

Now, lets consider the characteristics of the Blasius solution:
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see below
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10.6 Quantitative Relations for the Turbulent Boundary 

Layer
Description of Turbulent Flow

V and p are random functions of time in a turbulent flow

[image: image170.png]The mathematical complexity of turbulence entirely precludes any exact analysis.  A statistical theory is well developed; however, it is both beyond the scope of this course and not generally useful as a predictive tool.  Since the time of Reynolds (1883) turbulent flows have been analyzed by considering the mean (time averaged) motion and the influence of turbulence on it; that is, we separate the velocity and pressure fields into mean and fluctuating components
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and for compressible flow
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where (for example)

[image: image171.png]


[image: image40.wmf]ò

=

+

1

0

0

t

t

t

1

udt

t

1

u





Thus by definition 
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, etc.  Also, note the following rules which apply to two dependent variables f and g
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The most important influence of turbulence on the mean motion is an increase in the fluid stress due to what are called the apparent stresses.  Also known as Reynolds stresses:
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The mean-flow equations for turbulent flow are derived by substituting 
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 into the Navier-Stokes equations and averaging.  The resulting equations, which are called the Reynolds-averaged Navier-Stokes (RANS) equations are:

Continuity
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Momentum
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1) equations are for the mean flow

2) differ from laminar equations by Reynolds stress terms = 
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3) influence of turbulence is to transport momentum from one point to another in a similar manner as viscosity

4) since 
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 are unknown, the problem is indeterminate: the central problem of turbulent flow analysis is closure!

4 equations and 4 + 6 = 10 unknowns



2-D Boundary-layer Form of RANS equations

[image: image65.wmf]0

y

v

x

u

=

¶

¶

+

¶

¶



[image: image66.wmf](

)

v

u

y

y

u

p

x

y

u

v

x

u

u

2

2

e

¢

¢

¶

¶

-

¶

¶

n

+

÷

ø

ö

ç

è

æ

r

¶

¶

-

=

¶

¶

+

¶

¶








requires modeling

Turbulence Modeling
Closure of the turbulent RANS equations require the determination of 
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, etc.  Historically, two approaches were developed: (a) eddy viscosity theories in which the Reynolds stresses are modeled directly as a function of local geometry and flow conditions; and (b) mean-flow velocity profile correlations which model the mean-flow profile itself.  The modern approaches, which are beyond the scope of this class, involve the solution for transport PDE’s for the Reynolds stresses which are solved in conjunction with the momentum equations.

(a) eddy-viscosity: theories 

(mainly used with differential methods)




[image: image68.wmf]y

u

v

u

t

¶

¶

m

=

¢

¢

r

-




The problem is reduced to modeling (t, i.e.,



(t = (t(x, flow at hand)


Various levels of sophistication presently exist in modeling (t
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The total stress is
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Mixing-length theory (Prandtl, 1920)
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Although mixing-length theory has provided a very useful tool for engineering analysis, it lacks generality.  Therefore, more general methods have been developed.

One and two equation models
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C = constant


k2 = turbulent kinetic energy
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( = turbulent dissipation rate

Governing PDE’s are derived for k and ( which contain terms that require additional modeling.  Although more general then the zero-equation models, the k-( model also has definite limitation; therefore, recent work involves the solution of PDE’s for the Reynolds stresses themselves.  Difficulty is that these contain triple correlations that are very difficult to model.

(b) mean-flow velocity profile correlations

(mainly used with integral methods)

As an alternative to modeling the Reynolds stresses one can model mean flow profile directly.  For simple 2-D flows this approach is quite food and will be used in this course.  For complex and 3-D flows generally not successful.  Consider the shape of turbulent velocity profiles.  

Note that very near the wall (laminar must dominate since 
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Inner layer: 
viscous stress dominates

Outer layer:
turbulent stress dominates

Overlap layer:
both types of stress important

1) Inner layer (Prandtl, 1930)
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u* = friction velocity = 
[image: image81.wmf]r

t

/

w






[image: image82.wmf]n

=

+

*

yu

y


very near the wall:

( ( (w ( constant = 
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2) Outer layer (Karmen, 1933)
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  note: independent of ( and actually also depends on 
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velocity defect law

3) Overlap layer (Milliken, 1937)

In order for the inner and outer layers to merge smooth
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[image: image89.emf]
Note that the y+ scale is logarithmic and thus the inner law only extends over a very small portion of (


Inner law region < .2(
And the log law encompasses most of the boundary-layer.  Thus as an approximation one can simply assume
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is valid all across the shear layer.  This is the approach used in this course for turbulent flow analysis.  The approach is a good approximation for simple and 2-D flows (pipe and flat plate), but does not work for complex and 3-D flows.





Momentum Integral Analysis

Background:  History and Modern Approach: FD

To obtain general momentum integral relation which is valid for both laminar and turbulent flow
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   flat plate equation 
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displacement thickness

Can also be derived by CV analysis as shown next for flat plate boundary layer.

Momentum Equation Applied to the Boundary Layer



CV = 1, 2, 3, 4


[image: image98.wmf]ò

t

=

=

-

x

0

w

dx

b

drag

D


       pressure force = 0 for v << Uo
force on CV

wall shear stress


   u ( Uo

[image: image99.wmf](

)

(

)

ò

×

r

+

å

ò

×

r

=

-

=

3

1

x

dA

V

u

dA

V

u

D

F




 =
[image: image100.wmf](

)

ò

r

+

-

r

3

2

2

o

dy

u

b

bh

U



[image: image101.wmf]ò

r

-

r

=

d

0

2

2

o

dy

u

b

bh

U

)

x

(

D


next eliminate h using continuity
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       ( = momentum thickness
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 cf = local skin friction coefficient






momentum integral relation for 

flat plate boundary layer
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Approximate solution for a laminar boundary-layer

Assume cubic polynomial for u(y)
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i.e.,
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   momentum integral equation for 
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  Compare with









  Exact Blassius

i.e.,
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span length


total skin-friction drag coefficient

Approximate solution Turbulent Boundary-Layer


Ret ( 3 X 106
for a flat plate boundary layer









Recrit ( 500,000
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as was done for the approximate laminar flat plate boundary-layer analysis, solve by expressing cf = cf (() and ( = ((() and integrate, i.e.

assume log-law valid across entire turbulent boundary-layer
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or
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 power-law fit

Next, evaluate
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can use log-law or more simply a power law fit
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almost linear
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Alternate forms given in text depending on experimental information and power-law fit used, etc.  (i.e., dependent on Re range.)

Some additional relations given in texts for larger Re are as follows:
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Finally, a composite formula that takes into account both the initial laminar boundary-layer (with translation at 

ReCR = 500,000) and subsequent turbulent boundary layer is 
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105 < Re < 107
Local 

shear-stress coefficient



Total shear-stress coefficient



i.e., much faster growth rate than laminar boundary layer 



Note: can not be used to obtain  cf (() since (w ( (



cf (()



neglect laminar sub layer and velocity defect region



parabolic



� EMBED Equation.3  ���



depends on u(y)



Steady

( = constant

neglect g

v << u = uo ( p = constant

i.e., -(p = 0



y = h + δ*= streamline 

starts in uniform flow

 	 merges with ( at 3



edge value, i.e., inviscid flow value!



Note: � EMBED Equation.3  ��� = 0 for a flat plate



elliptic



For flat plate or ( for general case



� EMBED Equation.3  ���



From dimensional analysis



From dimensional analysis



Known as a zero equation model since no additional PDE’s are solved, only an algebraic relation



distance across shear layer



� EMBED Equation.3  ���are mixing lengths which are analogous to molecular mean free path, but much larger



based on kinetic theory of gases



molecular viscosity



eddy viscosity 

(for high Re flow (t >> ()



turbulent velocity scale



turbulent length scale



where Vt and Lt are based an large scale turbulent motion



In analogy with the laminar viscous stress, i.e., (t ( mean-flow rate of strain



u1 = u	x1 = x

u2 = v	x2 = y

u3 = w	x3 = z



Symmetric 2nd order tensor



f = (u, v, w, p)

s = (x, y, z, t)



and t1sufficiently large that the average is independent of time
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