
Review for Exam 3 
 

Chapter 9: Differential analysis of Fluid Flow 
 
Governing equation of: 
 Integral form Useful for large scale CV analysis 
 Differential form Useful for relatively small-scale point analysis 
 

9.1 Continuity equation in differential form 
 

 

 
 

 
**Simplification of 2. denotes the incompressibility of the fluid!! 
 



9.2 The stream function ψ  
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Polar coordinates (left), Axisymmetric cylindrical coordinates (right) 

 
Important features of ψ  
• Curves of constant ψ are streamlines of the flow 
• The difference in the value of ψ from one streamline to another is equal to 

the volume flow rate per unit width between the two streamlines 
 

 
 



9.3 Navier-Stokes (NS) Equations 
 
NS equation is a conservation of momentum!! 

 

 
Start from 1-D flow approximation: 

 

 
Notice that: 
  Body force due to external fields such as gravity or magnetics 

 
  Surface force due to the stresses acting on the sides of CS 

 



 
 

 
 
The physical meanings of each term in NS equation are: 

 
Write viscous shear and normal stresses in the form as: 

 

 
After some mathematical manipulation, NS and continuity equations are obtained as: 
 

 



9.4 Differential Analysis of Fluid Flow 
 

• Couette Flow 

  
 
Governing equations and boundary conditions for flow field: 

 
Solution (velocity profile and shear stress): 

 
 

• Generalization of inclined flow with a constant pressure gradient 

 
Governing equations and boundary conditions for flow field: 

 
Solution with non-dimensional form (velocity profile): 

 
 



Further non-dimensionalization of the obtained velocity profile yields: 

 
 
Effect of pressure gradient to the velocity profile of Couette flow: 

 

linear is profile velocity Thegradient pressure  Zero:0
 wallstationary near the Backflow gradient  pressure Adverse :0

 widthentire over the positive isVelocity gradient pressure Favorable :0

→=
→<
→>

P
P
P

 

 
Chapter 10: Approximate Solutions of the NS equations 
 

10.1 Creeping flow approximation 
 

  
  

In non-dimensional form of NS equation, 

  



 
 
10.2 Approximation for Inviscid Regions of Flow See Text pp.481-pp.485  
10.3 The Irrotational Flow Approximation  See Text pp.485-pp.510 
 
10.4 Qualitative Description of the Boundary layer 
 
 Boundary layer:  

A very thin region of flow near a solid wall where viscous forces and 
rotationality cannot be ignored. 

 
 Boundary-layer theory: 

The asymptotic form of the NS equations for high-Re flow about the 
slender bodies. 

 
 
 The order assumptions of boundary-layer theory: 
 

 



Use the order assumptions above to obtain boundary-layer equations from NS 
equations: 
 
NS equations: 

 
 
Boundary-layer equations: 
 

 
 
Important aspects of boundary-layer equations: 
 

1. 0=
∂
∂
y
P  i.e. P=Pe=const. across the boundary layer 

2. Continuity equation holds. 
3. Boundary conditions to solve the boundary-layer equations are: 

   



10.5 Quantitative relations for the Laminar Boundary Layer 
 
 Laminar boundary layer over a flat plate Blasius solution 
  
    Governing equations and boundary conditions to obtain Blasius solution: 

 
 

    Results: 

  

  

  
Displacement thickness: imaginary increase in thickness of the wall, as seen by 
the outer flow, due to the effect of the growing boundary layer. 

 



  
Momentum thickness: the loss of momentum flux per unit width divided by ρU2 
due to the presence of the growing boundary layer. 

 

  
 



10.6 Qualitative relations for the Turbulent Boundary layer 
  
 Transition from laminar boundary-layer to turbulent boundary-layer: 

 
 Engineering critical Reynolds number: Rex, cr=  5105×
  Rex<Rex, cr: boundary layer is most likely laminar. 
  Rex>Rex, cr: boundary layer is most likely turbulent. 
 
 Description of turbulent flow: 

 
Velocity and pressure are random functions of time!! 
They can be separated into two parts such as mean and fluctuation components: 

 
 
Most important influence of turbulence on the mean motion: 

An increase in the fluid stress by “Reynolds stresses” 

 
‘Modeling’ required!! 



Mean flow equations for turbulent flow 
Reynolds Averaged Navier Stokes (RANS) equations 

 
Turbulence Modeling: 
a) Eddy viscosity, Mixing-length theory, One-equation model,  

Two- equation model (k-ε model, k-ω model: Recall CFD-PreLab2, Lab2!!) 
 

b) Mean-flow velocity profile correlations 
 

 

 
1) Inner layer 

 



2) Outer layer 

   
3) Overlap layer 

   

 
 

Momentum Integral Analysis: obtain general momentum integral relation 
Valid for both laminar and turbulent flow 

 

 

 



 
   On the other hand, CD can be expressed as; 

 
   Then, 

 
   Therefore, 

 
   Finally, momentum integral relation is obtained as:; 

 
 

Approximate solutions for a laminar boundary layer obtained from 
momentum integral analysis: 

 
 



Approximate solutions for a turbulent boundary layer obtained from 
momentum integral analysis: 
 
Velocity profile inside the turbulent boundary layer to obtain the solutions: 
 
1) log-law 

 
2) 1/7 power law 

 
 

  Obtained approximate solutions: 

   

   

   
 

 
Cf vs ReL relationship in laminar and turbulent boundary layer 



 Chapter 11: Drag and Lift 
 
 11.1 Basic consideration 
 

[Drag]=[form drag]+[skin-friction drag] 

   
  Drag 

   
  Lift 

   
 
  Drag reduction by streamlining: 
 

   
 
  



11.2 Drag of 2-D and 3-D bodies 
   
  Flat-plate parallel to the flow: 

   
  
  In general, 

 
   

   

 
   
   



 Drag coefficients if common geometries (2D and 3D): 
   

 
 
Flow over cylinder and spheres: 
 

• Re<1: Creeping flow, CD=24/Re, No-flow separation regime 
• 105<Re<106: boundary layer become turbulent, large reduction in CD 

 

 
   



Lift: 
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 Lift generation by spinning: Magnus effect 

 

 
   
   


