Review for Exam 3

Chapter 9: Differential analysis of Fluid Flow

Governing equation of:

Integral form \rightarrow Useful for large scale CV analysis Differential form \rightarrow Useful for relatively small-scale point analysis

9.1Continuity equation in differential form

9.2The stream function ^ψ

Polar coordinates (left), Axisymmetric cylindrical coordinates (right)

Important features of ψ

- Curves of constant ψ are streamlines of the flow
- The difference in the value of ψ from one streamline to another is equal to the volume flow rate per unit width between the two streamlines

9.3Navier-Stokes (NS) Equations

NS equation is a conservation of momentum!!

Start from 1-D flow approximation:

$$
\Sigma \underline{F} = \underbrace{\frac{d}{dt} \int_{CV} \rho \underline{V} dV}_{\text{c}} + \underbrace{\int V \rho V \cdot dA}_{\text{c}} \qquad \text{1-D flow approximation}
$$
\n
$$
= \sum (\dot{m}_i \underline{V}_i)_{\text{out}} - \sum (\dot{m}_i \underline{V}_i)_{\text{in}}
$$
\nwhere $\dot{m} = \rho A V = \rho dy dz u$ x-face mass flux\n
$$
= \left[\frac{\partial}{\partial x} (\rho u \underline{V}) + \frac{\partial}{\partial y} (\rho v \underline{V}) + \frac{\partial}{\partial z} (\rho w \underline{V}) \right] dxdydz
$$
\nx-face y-face z-face\n
$$
\Sigma \underline{F} = \rho \frac{D \underline{V}}{Dt} dxdydz
$$
\nwhere $\Sigma \underline{F} = \Sigma \underline{F}_{body} + \Sigma \underline{F}_{surface}$

Notice that:

Body force \rightarrow due to external fields such as gravity or magnetics

$$
\sum E_{body} = dE_{grav} = \rho g dx dy dz
$$

and $g = -g\hat{k}$ for $g\hat{k} z\hat{\uparrow}$
i.e., $\underline{f}_{body} = -\rho g\hat{k}$

Surface force \rightarrow due to the stresses acting on the sides of CS

$$
\underline{f}_{\text{surf}} = -\nabla p + \nabla \cdot \boldsymbol{\tau}_{ij} = \nabla \cdot \boldsymbol{\sigma}_{ij} \qquad \qquad \boldsymbol{\sigma}_{ij} = -p \boldsymbol{\delta}_{ij} + \boldsymbol{\tau}_{ij}
$$

Putting together the above results

$$
\sum \underline{f} = \underline{f}_{body} + \underline{f}_{surf} = \rho \frac{D\underline{V}}{Dt}
$$

$$
\underline{f}_{body} = -\rho g\hat{k}
$$

$$
\underline{f}_{surface} = -\nabla p + \nabla \cdot \tau_{ij}
$$

$$
\underline{a} = \frac{D\underline{V}}{Dt} = \frac{\partial \underline{V}}{\partial t} + \underline{V} \cdot \nabla \underline{V}
$$

The physical meanings of each term in NS equation are:

Write viscous shear and normal stresses in the form as:

$$
\tau_{ij} = \mu \epsilon_{ij} \qquad \qquad \mu = \text{coefficient of viscosity}
$$
\n
$$
\epsilon_{ij} = \text{rate of strain tensor}
$$
\n
$$
= \begin{bmatrix}\n\frac{\partial u}{\partial x} & \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\right) & \left(\frac{\partial w}{\partial x} + \frac{\partial u}{\partial z}\right) \\
\left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right) & \frac{\partial v}{\partial y} & \left(\frac{\partial w}{\partial y} + \frac{\partial v}{\partial z}\right) \\
\left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x}\right) & \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y}\right) & \frac{\partial w}{\partial z}\n\end{bmatrix}
$$

After some mathematical manipulation, NS and continuity equations are obtained as:

x:
$$
\rho \left[\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} \right] = -\frac{\partial p}{\partial x} + \mu \left[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right]
$$

\ny: $\rho \left[\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} \right] = -\frac{\partial p}{\partial y} + \mu \left[\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right]$
\nz: $\rho \left[\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} \right] = -\frac{\partial p}{\partial z} + \mu \left[\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2} \right]$
\n $\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$

9.4Differential Analysis of Fluid Flow

• Couette Flow

Governing equations and boundary conditions for flow field:
Continuity $\frac{\partial u}{\partial x} = 0$ $u = u(y)$ Continuity $u = u(y)$ $v = 0$
 $\frac{\partial p}{\partial x} = \frac{\partial p}{\partial y} = 0$ $0 = \mu \frac{d^2 u}{dy^2}$ Momentum

Solution (velocity profile and shear stress):

$$
u = \frac{U}{t}y
$$

\n
$$
\tau = \mu \frac{du}{dy} = \frac{\mu U}{t} = constant
$$

• Generalization of inclined flow with a constant pressure gradient

$$
3\frac{1}{2}
$$
\n
$$
4\frac{1}{2} = \frac{1}{2} \times \frac{1}{2} = \frac
$$

Governing equations and boundary conditions for flow field:

Continuity
$$
\frac{\partial u}{\partial x} = 0
$$
 $u = u(y)$
\nMomentum $0 = -\frac{\partial}{\partial x}(p + \gamma z) + \mu \frac{d^2 u}{dy^2} \qquad \frac{\partial p}{\partial y} = 0$

Solution with non-dimensional form (velocity profile):

$$
\frac{u}{U} = -\frac{\gamma t^2}{2\mu U} \frac{dh}{dx} \left(1 - \frac{y}{t} \right) \frac{y}{t} + \frac{y}{t}
$$

Further non-dimensionalization of the obtained velocity profile yields: define: $P = non-dimensional pressure gradient$

Effect of pressure gradient to the velocity profile of Couette flow:

 $P < 0$: Adverse pressure gradient \rightarrow Backflow near the stationary wall $P > 0$: Favorable pressure gradient \rightarrow Velocity is positive over the entire width

 $P = 0$: Zero pressure gradient \rightarrow The velocity profile is linear

Chapter 10: Approximate Solutions of the NS equations

10.1 Creeping flow approximation

Basic assumption for creeping flow: the inertia terms are negligible in the momentum equation if Re $<<1$.

In non-dimensional form of NS equation,

$$
\text{Re}\frac{D\mathbf{V}^*}{Dt^*} = -\nabla^* p^* + \nabla^{*2} \mathbf{V}^*
$$

Since Re<<1, we have:

 $\nabla^* p^* \approx \nabla^{*2} \mathbf{V}^*$

Applications of Creeping Flow Theory

- 1. Fully developed duct flow: inertia terms also vanish
- 2. Flow about immersed bodies: usually small particles
- 3. Flow in narrow but variable passages: lubrication theory
- 4. Flow through porous media: groundwater movement

10.2 Approximation for Inviscid Regions of Flow→See Text pp.481-pp.485 10.3 The Irrotational Flow Approximation \rightarrow **See Text pp.485-pp.510**

10.4 Qualitative Description of the Boundary layer

Boundary layer:

A very thin region of flow near a solid wall where **viscous forces and rotationality cannot be ignored**.

Boundary-layer theory:

The asymptotic form of the NS equations for high-Re flow about the slender bodies.

The order assumptions of boundary-layer theory:

Use the order assumptions above to obtain boundary-layer equations from NS equations:

NS equations:

$$
u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = -\frac{\partial p}{\partial x} + \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)
$$

\n1 1 1 \varepsilon \varepsilon⁻¹ \varepsilon² 1 \varepsilon²
\n
$$
u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = -\frac{\partial p}{\partial y} + \mu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial x^2} \right)
$$

\n1 \varepsilon \varepsilon 1 \varepsilon² 1 \varepsilon⁻¹
\n
$$
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0
$$

\n1 1

Boundary-layer equations:

Retaining terms of $O(1)$ only results in the celebrated boundary-layer equations $\sqrt{ }$

$$
u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = -\frac{\partial p}{\partial x} + \mu \frac{\partial^2 u}{\partial y^2}
$$

\n
$$
\frac{\partial p}{\partial y} = 0
$$

\n
$$
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0
$$
 parabolic

Important aspects of boundary-layer equations:

- 1. $\frac{U_1}{2} = 0$ ∂ ∂ *y* $\frac{P}{Q}$ = 0 i.e. *P*=*P_e*=const. across the boundary layer
- 2. Continuity equation holds.
- 3. Boundary conditions to solve the boundary-layer equations are:

$$
u = v = 0 \t y = 0
$$

$$
u = U_e \t y = \delta
$$

10.5 Quantitative relations for the Laminar Boundary Layer

Laminar boundary layer over a flat plate \rightarrow Blasius solution

Governing equations and boundary conditions to obtain Blasius solution:

Displacement thickness: imaginary increase in thickness of the wall, as seen by the outer flow, due to the effect of the growing boundary layer.

$$
\theta = \int_{0}^{\delta} \left(1 - \frac{u}{U_{\infty}} \right) \frac{u}{U_{\infty}} dy = 0.664 \frac{x}{\sqrt{Re_{x}}} \quad \text{momentum thickness}
$$

Momentum thickness: the loss of momentum flux per unit width divided by ρU^2 due to the presence of the growing boundary layer.

10.6 Qualitative relations for the Turbulent Boundary layer

Transition from laminar boundary-layer to turbulent boundary-layer:

Engineering critical Reynolds number: $Re_{x, cr} = 5 \times 10^5$ \rightarrow Re_x<Re_{x, cr}: boundary layer is most likely laminar. \rightarrow Re_x>Re_{x, cr}: boundary layer is most likely turbulent.

Description of turbulent flow:

τ

Velocity and pressure are random functions of time!! They can be separated into two parts such as mean and fluctuation components:

$$
u = \overline{u} + u'
$$

\n
$$
v = \overline{v} + v'
$$

\n
$$
w = \overline{w} + w'
$$

\n
$$
p = \overline{p} + p'
$$

\nand for compressible flow
\n
$$
\rho = \overline{\rho} + \rho'
$$

\nand $T = \overline{T} + T'$

Most important influence of turbulence on the mean motion: \rightarrow An increase in the fluid stress by "Reynolds stresses"

$$
\begin{aligned}\n\zeta_{ij} &= -\rho \overline{u'_i u'_j} \\
&= \begin{bmatrix}\n-\rho \overline{u'^2} & -\rho \overline{u'v'} & -\rho \overline{u'w'} \\
-\rho \overline{u'v'} & -\rho \overline{v'^2} & -\rho \overline{v'w'} \\
-\rho \overline{u'w'} & -\rho \overline{v'w'} & -\rho \overline{w'^2}\n\end{bmatrix}\n\end{aligned}
$$

'Modeling' required!!

Mean flow equations for turbulent flow

Reynolds Averaged Navier Stokes (RANS) equations
Continuity $\nabla \cdot \underline{V} = 0$ i.e. $\nabla \cdot \overline{V} = 0$ and $\nabla \cdot \underline{V}' = 0$

Momentum

\n
$$
\rho \frac{D\overline{V}}{Dt} = -\rho g \hat{k} - \nabla \overline{p} + \nabla \cdot \tau_{ij}
$$
\n
$$
\tau_{ij} = \mu \left[\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right] - \rho \overline{u'_i u'_j}
$$
\n
$$
\tau'_{ij} = \nu \qquad\n\begin{cases}\n u_2 = v & x_2 = y \\
 u_3 = w & x_3 = z\n\end{cases}
$$

Turbulence Modeling:

- a) Eddy viscosity, Mixing-length theory, One-equation model, Two- equation model (*k-ε* model, *k-ω* model: **Recall CFD-PreLab2, Lab2!!**)
- b) Mean-flow velocity profile correlations

Outer layer: turbulent stress dominates

Overlap layer: both types of stress important

1) Inner layer
 $u = f(\mu, \tau_w, \rho, y)$ note: not $f(\delta)$ $u^+ = f(y^+)$ law-of-the-wall $\mathbf{u}^+ = \mathbf{y}^+$ $u^+ = \frac{u}{u^*}$

where:

 u^* = friction velocity = $\sqrt{\tau_w / \rho}$

$$
y^+ = \frac{yu^*}{v}
$$

very near the wall:

 $\tau \sim \tau_w \sim \text{constant} = \mu \frac{du}{dy}$ \implies $u = cy$ or $u^+ = y^+$

Momentum Integral Analysis: obtain general momentum integral relation \rightarrow Valid for both laminar and turbulent flow

$$
D(x) = \rho b U_o \int_0^{\delta} u \, dy - \rho b \int_0^{\delta} u^2 \, dy
$$

$$
= \rho b \int_0^{\delta} u (U_o - u) \, dy
$$

$$
C_D = \frac{D}{\frac{1}{2} \rho U_o^2 b L} = \frac{2}{L} \int_0^{\delta} \frac{u}{U_o} \left(1 - \frac{u}{U_o} \right) \, dy
$$

 θ = momentum thickness On the other hand, C_D can be expressed as;

$$
C_D = \frac{D}{\frac{1}{2}\rho U_o^2 A} = \frac{b\int_0^x \tau_w dx}{\frac{1}{2}\rho U_o^2 bL} = \frac{2\theta}{L}
$$

Then,

$$
\int_{0}^{x} \frac{\tau_{w}}{1-\rho U_{o}^{2}}(x)dx = 2\theta(x)
$$

Therefore,

$$
\frac{1}{2} \left(\frac{\tau_{\text{w}}}{\frac{1}{2} \rho U_{\text{o}}^2} \right) = \frac{d\theta}{dx}
$$

Finally, momentum integral relation is obtained as:;

$$
\frac{c_f}{2} = \frac{d\theta}{dx}
$$
 c_f = local skin friction coefficient

\momentum integral relation for

flat plate boundary layer

Approximate solutions for a laminar boundary layer obtained from momentum integral analysis: Exact Blassius

$$
\delta = \frac{4.65x}{\sqrt{Re_x}} \qquad \frac{5x}{\sqrt{Re_x}} \qquad 7\% \downarrow
$$

$$
\tau_w = \frac{.323\rho V^2}{\sqrt{Re_x}} \qquad \frac{.332\rho U^2}{\sqrt{Re_x}} \qquad 3\% \downarrow
$$

$$
c_f = \frac{.646}{\sqrt{Re_x}} \qquad \frac{.664}{\sqrt{Re_x}}
$$

$$
C_f = \frac{1.29}{\sqrt{Re_L}} \qquad \frac{1.33}{\sqrt{Re_L}}
$$

Approximate solutions for a turbulent boundary layer obtained from momentum integral analysis:

Velocity profile inside the turbulent boundary layer to obtain the solutions:

1) \log -law
 $\frac{u}{u^*} = \frac{1}{\kappa} \ln \frac{yu^*}{v} + B$ 2) 1/7 power law
 $\frac{u}{U} = \left(\frac{y}{\delta}\right)^{1/7}$

neglect laminar sub layer and velocity defect region

Obtained approximate solutions:

$$
\frac{\delta}{\mathbf{x}} = .16 \,\text{Re}_{\mathbf{x}}^{-1/7}
$$

$$
\mathbf{c}_{\mathbf{f}} = \frac{.027}{\text{Re}_{\mathbf{x}}^{1/7}}
$$

$$
C_f = \frac{.031}{Re_L^{1/7}} = \frac{7}{6}C_f(L)
$$

Total shear-stress coefficient

$$
C_f = \frac{.455}{(\log_{10} Re_L)^{2.58}} \frac{-1700}{Re_L}
$$
 Re > 10⁷

$$
\frac{\delta}{L} = c_f(.98 \log Re_L -.732)
$$

Local shear-stress coefficient

Cf vs *ReL* relationship in laminar and turbulent boundary layer

Chapter 11: Drag and Lift

11.1 Basic consideration

Drag reduction by streamlining:

Trade-off relationship between pressure drag and friction drag

Trade-off relationship between pressure drag and friction drag

11.2 Drag of 2-D and 3-D bodies

Flat-plate parallel to the flow:

$$
C_{\text{Dp}} = \frac{1}{\frac{1}{2}\rho V^2 A^{\text{S}}}
$$

\n
$$
C_{\text{f}} = \frac{1}{\frac{1}{2}\rho V^2 A^{\text{S}}}
$$

\n
$$
= \frac{1.33}{\text{Re}_{\text{L}}^{1/2}}
$$

\n
$$
= \frac{.074}{\text{Re}_{\text{L}}^{1/5}}
$$

In general,

$$
C_D = \underbrace{\frac{Drag}{\frac{1}{2}\rho V^2 A}} = f\left(Re, Ar, \frac{t}{L}, \frac{\epsilon}{L}, T, etc.\right)
$$

scale factor

Flow separation:

 \rightarrow The fluid stream detaches itself from the surface of the body at sufficiently high velocities. Only appeared in viscous flow!!

Flow separation forms the region called 'separated region'

 S = point of separation

Fig. 2.12. Diagrammatic representation of flow in the boundary layer near a point of separation

Drag coefficients if common geometries (2D and 3D):

Flow over cylinder and spheres:

- Re<1: Creeping flow, $C_D = 24$ /Re, No-flow separation regime
- 10^5 < Re < 10⁶: boundary layer become turbulent, large reduction in CD

 α degrees

Lift generation by spinning: Magnus effect

