Review problems for final exam — Fall2006 —

11-96F  The passenger compartment of a minivan traveling
at 60 mi‘h in ambient air at 1 atm and 80°F can be modeled
as a 3.2-ft-high, 6-ft-wide, and 11-fi-long rectangular box.
The airflow over the exterior surfaces can be assumed to be
furbulent because of the intense vibrations involved. Deter-
mine the drag force acting on the top and the two side sur-
faces of the van and the power required to overcome it.

FIGURE P11-96E
10-84 In order to avoid boundary layer interference, engi-
neers design a “boundary layer scoop™ to skim off the bound-
ary layer in a large wind tunnel (Fig. P10-84). The scoop is
constructed of thin sheet metal. The air is at 20°C, and flows
at V = 65.0 m/s. How high (dimension h) should the scoop
be at downstream distance x = .45 m?

FIGURE P10-84



8-59  Consider flow from a water reservoir through a circu-
lar hole of diameter D at the side wall at a vertical distance H
from the free surface. The flow rate through an actual hole
with a sharp-edged entrance (K, = 0.5) will be considerably
less than the flow rate calculated assuming “frictionless™ flow
and thus zero loss for the hole. Disregarding the effect of the
kinetic energy correction factor, obtain a relation for the
“equivalent diameter™ of the sharp-edged hole for use in fric-
tionless flow relations.
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FIGURE P8-59

7-73  Use dimensional analysis to show that in a problem
involving shallow water waves (Fig. P7-73), both the Froude
number and the Reynolds number are relevant dimensionless
parameters. The wave speed ¢ of waves on the surface of a
liquid is a function of depth h, gravitational acceleration g,
fluid density p. and fluid viscosity p. Manipulate your IT's to
get the parameters into the following form:
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FIGURE P7-73




S—100 A wind tunnel draws atmospheric air at 20°C and
101.3 kPa by a large fan located near the exit of the tunnel. If
the air velocity in the tunnel is 80 m/s, determine the pressure
in the tunnel.
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FIGURE P5-100

5-49E  Water flows through a horizontal pipe at a rate of 1
gal/s. The pipe consists of two sections of diameters 4 in and
2 in with a smooth reducing section. The pressure difference
between the two pipe sections is measured by a mercury
manometer. Neglecting frictional effects, determine the dif-
ferential height of mercury between the two pipe sections.
Answer: 0.52 in
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4in

FIGURE P5-49E



Solutions for the review problems — Fall 2006—

10-84
Solution The height of a boundarv laver scoop m a wind tunnel test section 15
to be calculated.

Assumptions 1 The flow 15 steady and incompressible. 2 The walls are smooth. 3
The boundary layers starts growing at x = 0.

Properties The kinematic viscosity of air at 20°C is v=1.516 x 10~ m’/s.

Analysis (a) As the boundary laver grows along the wall of the wind tunnel test
section, the Revnolds number increases. The Reynolds number at location x 15

(65.0 m/s)(145m
Re,: Re, = m_\ -':_5 — )
’ v 1.516=107m"/s

=6.22x10°

Since Re; 15 greater than the transiion Reynolds number. Rey preion & 3 10°, we
assume that the boundary layer 1s turbulent throughout the length of the test section.
We estimate the boundary laver thickness at the location of the scoop,

0.16 0.16(1.45 m) ;
. ——=248x10" m=248mm (y)

ST
(Re,) (6.22x10°)

Table 10-4a: &

or,

038y 0.38(145m) .
=5 =241x10" m=241mm  (y)
_ —
(Re, )" (622x10°)

Table 10-4b: g =



11-96E The passenger compartment of a minivan 15 modeled as a rectangular box. The drag force acting on
the top and the two side surfaces and the power needed to overcome it are to be determined. v

Assumptions 1 The air flow 1s steady and mcompressible. 2 The air flow over the exterior surfaces 1s
turbulent because of constant agitation. 3 Air is an ideal gas. 4 The top and side surfaces of the minivan are
flat and smooth (in reality they can be rough). 5 The atmospheric air 1s calm (no significant winds).

P."O_j'}{:’!‘ﬁf:i The density and}unetmtic viscosity of air at 1 atm and 80°F are p = 0.07350 Ibm/ft® and v =
0.6110 ft'/h = 1.697%107 ft'/s.

Analysis The Reynolds number at the end of the top and side surfaces 15

VL [60x1A4667 fi/s](11£)
ReL == 3 .7,

L 1.697 107" fi*/s
The air flow over the entire outer surface 1s assumed to be turbulent.
Then the friction coefficient becomes

—5.704x10°%

Minivan

0.074 0.074 S Air

The area of the top and side surfaces of the mimnivan 1s |
A=A+ 2dge = 0x11+2x3.2x11 =136 4 i
Noting that the pressure drag is zero and thus Cp = C¢ for a plane

surface, the drag force acting on these surfaces becomes

2 . _ gl [
F‘D:Cf:{,aff =0.00330><[136_4f13){O'D?4lbmﬂ )(60x1.4667 fi/s)” | lbf

| =4.0Ibf
2 322 Tbm - fi's”

Woting that power 15 force times velocity, the power needed to overcome this drag force 15

- C1kw
e = ELV = (4.01b£)(60x1.4667ft/s) ———— | _0.48kW
ag = Fp¥7 = (4.0160)(60x ' SJ-\ 73756 Ibf - ﬁ.-'-,_,-l

e — —0.00330 :
Rel?  (5.704x10%)17 \ Lo



8-59 Water 1s discharged from a water reservoir through a circular hole of diameter D at the side wall at a
vertical distance H from the free surface. A relation for the “equivalent diameter™ of the sharp-edged hole
for use 1n frictionless flow relations 1s to be obtained.

Assumpitions 1 The flow is steady and incompressible. 2 The reservoir is open to the atmosphere so that the
pressure 15 atmospheric pressure at the free surface. 3 The effect of the kinetic energy correction factor 15
disregarded, and thus o = 1.

Analysis The loss coefficient 1s K; = 0.5 for the sharp-edged entrance, and K7 = 0 for the “frictionless™
flow. We take point 1 at the free surface of the reservoir and point 2 at the exit of the hole, which 15 also
taken to be the reference level (z; = 0). Noting that the fluid at both points is open to the atmosphere (and
thus P; = P, = P,yy) and that the fluid velocity at the free surface 15 zero (7, = 0), the energy equation for a
control volume between these two points (in terms of heads) simplifies to

P 4 P, v, vy
_1+a1+_zl_hplm:.u =——+0; ,.l_ +:1+h11:'b'_ne.e+hf, - H=Q’3 . _’il'r}l
= -g ) £ -£g ~g
rr 2
where the head loss 1s expressed as h; = K — Substituting and solving for I3 gives
2g
v vy . 2gH 2gH
Heo,-2+K, -1 > 2gH=V}a,+K;) - V= |—__]|°%
©2g 2g -7 ) o, + K 1+K;
since o, = 1. Then the volume flow rate becomes
- D | 2gH
VAV, = = (1)

1+ X,
Note that i the special case of K; = 0 (frictionless flow), the velocity relation reduces to the Toricelli
equation. ¥ giones: = /286 . The flow rate in this case through a hole of D, (equivalent diameter) 1s

=

p ‘{De:lﬁr

V= Ac:equit' Ij?.fricr.inl.ﬂess = 4- EEH (2)
Setting Eqs. (1) and (2) equal to each other gives the desired @
relation for the equivalent diameter, — _ _ _____ _.

FDejqu;" :"-d—D] ng -----------------

Y Y | 2

. 4 V1+K; : D @
which grves .-Jﬁ.-L.-.-.:.-__al
D D : T
iy = ——— 1 = — = 0.904D
(1+K;) (1+0.5)° Daguiv < D

Discussion Note that the effect of frictional losses of a sharp-edged entrance 1s to reduce the diameter by
about 10%. Also, noting that the flow rate 1s proportional to the square of the diameter, we have

Vo Dilu._i. =(0.904D)* = 0.82D" . Therefore, the flow rate through a sharp-edged entrance is about 18%

less compared to the frictionless entrance case.



7-73

Analysis We perform a dimensional analvsis using the method of repeating
variables.

Step 1 There are five parameters in this problem; n = 5,

List of relevant parameters: c=fih p.u. g] =3

Step 2 The primary dimensions of each parameter are listed,
c h el i, E
1.1 1 1r =3} 1r-1,-1} fp1,-21
'} '}  {m'r?}] (w'ie} {Le)

Step 3 As a first guess, j 15 set equal to 3, the number of primary dimensions
represented m the problem (m. L. and t).

Reduction: j=3
If this value of j 1s correct, the expected number of I's 1s

Number of expected I1s: k=n-j=5-3=2

Step4 We need to choose three repeating parameters since j = 3. We pick length
scale fi, density difference o, and gravitational constant g.

Repeating parameters: h.p andg

Step 5 The Ils are generated. Note that for the first IT we do the algebra in our
heads since the relationship 1s very simple. The dependent IT 1s

JQ—& )

Thas IT 15 the Froude number. Similarly, the IT formed with viscosity 1s generated,

I1; = Froude number: II,=Fr=

IT, = sk ot {m1,} = {( w7 ) (L) () (e ]E
mass: {m"}={m'm®} 0=1+b b=-1
e () = frie) 0——1-2¢ - _%
length: {L°}={L“L’L‘3"’L5} 0 ::iz:jb_ﬁ: a=_%

which yields



IL: m,-—2
ph? g

We can manipulate this IT into the Eeynolds number 1f we invert 1t and then mmltiply
by Fr (Eq. 1) The final form 1s

h
Modified T1o = Reynolds number: I1,=Re= =
yZ;
Step 6 We write the final functional relationship as
) . h
Relationship berween I1s: Fr=——-= v (Rﬂ:} where Re=220

N p

5-100 A wind tunnel draws atmospheric air by a large fan. For a given air velocity, the pressure in the
tunnel 1s to be determuned. ¥

Assumptions 1The flow through the pipe is steady. incompressible, and wrrotational with negligible friction
(so that the Bernoulli equation 1s applicable). 2 Air 1s and ideal gas.

Properties The gas constant of air is B = 0.287 kPa-m* kg K.

Analysis We take point 1 in atmospheric air before it enters the wind tunnel (and thus P; = Puy, and 77 = 0),

and point 2 in the wind tunnel Noting that z; = z; (or, the elevation effects are negligible for gases), the
Bernoulli equation between points 1 and 2 gives
i B oy
T Y T RLE(
PE 28 PE  2E < Wind tunnel
Oz
where 20°C =

P 101.3kPa

1013 kPa 2)
T RT (0.287kPa-m’/kg-K)(293K)

o 1.205kg/m

Substituting, the pressure i the wind mnnel 15 deternuned to be
(80 m/s)? |

2, = (101.3kPa) —(1.205 ke/m*) .
2 =( )= - 2 \ 1kg-mfs” )

=97.4kPa

=

1IN “ 1kPa
L 1000 N/m® )

Discussion Note that the velocity in a wind tunnel mcreases at the expense of pressure. In reality, the
pressure will be even lower because of losses.



5-49E Water flows through a honzontal pipe that consists of two sections at a specified rate. The
differential height of a mercury manometer placed between the two pipe sections 1s to be deternuned. v

Assumptions 1The flow through the pipe 1s steady, mcompressible, and irrotational with negligible
frictional effects (so that the Bernoulli equation 1s applicable). 2 The losses m the reducing section are
neghgible.

Praperties The densities of mercury and water are py, = 847 Tbm/ft and p,. = 62.4 Tbm/ft.

Analysis We take poimnts 1 and 2 along the centerline of the pipe over the two tubes of the manometer.
Noting that z; = z;, the Bernoull: equation between pomts 1 and 2 gives

-2 72 22
i—L—:1=P3+L2—:, —» .ﬁ—R:M (1)
fE g £ 2 . 2

We let the differential height of the mercury manometer be / and the distance between the centerline and
the mercury level in the tube where mercury 1s raised be 5. Then the pressure difference P; — P; can also be
expressed as

B +p,8(s+h)=Py+p, g5+ pygh - B -P=(pg —-p,.lgh (2

Combining Egs. (1) and (2) and solving for &,

2in—p»

Vi-r?) i -t Vi -
ph(;’.q 11:(.0,1{5_,01,-]_,?}1” - }J:p“( 2 1)=,_| : 1
2 2g(pre —pw)  28(PHe /oy —1)
Calculating the velocities and substituting,
v v 1gal's [ 0.13368ft° )
A AL |=153fs
4y #Dp 74 (412 74\ lgal )
v v 1galls [ 0.13368f° |
A A | —6.13ftfs
4y, aDi /4 =(2N2f)° /4| lgal )

(613 fi/s)? —(1.53 fifs)?

- 4 —0.0435f = 0.52in
2322 f/57)(847/62.4-1)

Therefore, the differential height of the mercury column will be 0.52 1n.




