Information and assumptions

Find

determine the force that needs to be applied on the plate to maintain this motion.

Solution

The magnitudes of shear forces acting on the upper and lower surfaces of the plate are

$$
F_{shear} = \tau_w A_s = \mu A_s \left| \frac{du}{dy} \right|
$$
\n
$$
F_{shear, upper} = \tau_{w, upper} A_s = \mu A_s \left| \frac{du}{dy} \right| = \mu A_s \frac{V - 0}{h_1} = (0.027 \text{ N} \cdot \text{s/m}^2)(0.2 \times 0.2 \text{ m}^2) \frac{1 \text{ m/s}}{1.0 \times 10^{-3} \text{ m}} = 1.08 \text{ N}
$$
\n
$$
F_{shear, lower} = \tau_{w, lower} A_s = \mu A_s \left| \frac{du}{dy} \right| = \mu A_s \frac{V - V_w}{h_2} = (0.027 \text{ N} \cdot \text{s/m}^2)(0.2 \times 0.2 \text{ m}^2) \frac{[1 - (-0.3)] \text{ m/s}}{2.6 \times 10^{-3} \text{ m}} = 0.54 \text{ N}
$$
\n
$$
F = F_{\text{shear, upper}} + F_{\text{shear, lower}} = 1.08 + 0.54 = 1.62 \text{ N}
$$
\n
$$
\frac{(+2, +2)}{(+1)}
$$

Information and assumptions

Provided in problem statement

Find

- (a) the gage pressure at the center of the inlet of the elbow and
- (b) the anchoring force needed to hold the elbow in place.

Solution

(a) The mean inlet and outlet velocities of water are

$$
V_1 = V_2 = V = \frac{\dot{m}}{\rho A} = \frac{\dot{m}}{\rho(\pi D^2 / 4)} = \frac{25 \text{ kg/s}}{(1000 \text{ kg/m}^3) [\pi (0.1 \text{ m})^2 / 4]} = 3.18 \text{ m/s}
$$

The Bernoulli equation for a streamline going through the center of the reducing elbow is

$$
\frac{P_1}{\rho g} + \frac{V_1^2}{2g} + z_1 = \frac{P_2}{\rho g} + \frac{V_2^2}{2g} + z_2 \implies P_1 - P_2 = \rho g (z_2 - z_1) \implies P_{1,\text{gage}} = \rho g (z_2 - z_1) \frac{1}{(+2, +1)}
$$

$$
P_{1,\text{gage}} = (1000 \text{ kg/m}^3)(9.81 \text{ m/s}^2)(0.35 \text{ m}) \left(\frac{1 \text{ kN}}{1000 \text{ kg} \cdot \text{m/s}^2}\right) = 3.434 \text{ kN/m}^2 = 3.434 \text{ kR}
$$

(b) Then the momentum equations

$$
\sum \vec{F} = \sum_{\text{out}} \beta \vec{n} \vec{V} - \sum_{\text{in}} \beta \vec{n} \vec{V}.
$$
\n
$$
F_{Rx} + P_{1,\text{gage}} A_1 = 0 - \beta \vec{n} \vec{n} + V_1 = -\beta \vec{n} \vec{V}
$$
\n
$$
F_{Rx} = -\beta \vec{n} \vec{V} - P_{1,\text{gage}} A_1
$$
\n
$$
= -1.03(25 \text{ kg/s})(3.18 \text{ m/s}) \left(\frac{1 \text{ N}}{1 \text{ kg} \cdot \text{m/s}^2}\right) - (3434 \text{ N/m}^2) [\pi (0.1 \text{ m})^2 / 4]
$$
\n
$$
= -109 \text{ N}
$$
\n
$$
F_{Ry} = \beta \vec{n} \vec{V} = 1.03(25 \text{ kg/s})(3.18 \text{ m/s}) \left(\frac{1 \text{ N}}{1 \text{ kg} \cdot \text{m/s}^2}\right) = 81.9 \text{ N}
$$
\n
$$
F_R = \sqrt{F_{Rx}^2 + F_{Ry}^2} = \sqrt{(-109)^2 + 81.9^2} = 136 \text{ N}, \quad \theta = \tan^{-1} \frac{F_{Ry}}{F_{Rx}} = \tan^{-1} \frac{81.9}{-109} = -37^\circ = 143^\circ \text{ m/s}
$$

 $(+1)$

Prob. 3

Pipe2

$$
V_2 = V_1 = 6.366 \, \text{m/s}
$$
\n
$$
h_{L2} = f \, \frac{L_2}{D_2} \frac{V_2^2}{2g} = (0.02941) \frac{35 \, \text{m}}{0.06 \, \text{m}} \frac{(6.366 \, \text{m/s})^2}{2(9.81 \, \text{m/s}^2)} = 35.4 \, \text{m}
$$
\n
$$
h_L = h_{L1} + h_{L2} = 21.3 \, \text{m} + 35.4 \, \text{m} = 56.7 \, \text{m}
$$
\nThe required pumping head

$$
h_{pump,u} = \alpha_2 \frac{V_2^2}{2g} + h_L - z_1 = (1) \frac{(6.366 \, m/s)^2}{2(9.81 \, m/s^2)} + 56.7 - 30 = 28.7 m \, \frac{1}{(1)}
$$

Information and assumptions

Provided in problem statement

Find

 Estimate the boundary layer thickness, the displacement thickness, and the momentum thickness of the boundary layer at the end of the test section.

Solution

The Reynolds number at the downstream end of the wall

Re_x =
$$
\frac{V L}{V}
$$
 = $\frac{(7.5 \text{ ft/s})(1.5 \text{ ft})}{1.697 \times 10^{-4} \text{ ft}^2/\text{s}}$ = 6.63×10⁴

So the boundary layer remains laminar. $(+1)$

Boundary layer thickness:
$$
\delta = \frac{4.91x}{\sqrt{\text{Re}_x}} = \frac{4.91(1.5 \text{ ft})}{\sqrt{6.63 \times 10^4}} = 0.0286 \text{ ft} \approx 0.34 \text{ in}
$$

and

$$
Displacement\ thickness: \qquad \delta^* = \frac{1.72x}{\sqrt{\text{Re}_x}} = \frac{1.72(1.5 \text{ ft})}{\sqrt{6.63 \times 10^4}} = 0.0100 \text{ ft} \approx 0.12 \text{ in}
$$

and

Momentum thickness:
$$
\theta = \frac{0.664x}{\sqrt{\text{Re}_x}} = \frac{0.664(1.5 \text{ ft})}{\sqrt{6.63 \times 10^4}} = 0.00387 \text{ ft} \approx 0.046 \text{ in}
$$

Information and assumptions

Provided in problem statement

Find

Drag force acting on the top and side surfaces and the power required to overcome this

drag

Solution

The Reynolds number is

Re_L =
$$
\frac{VL}{\nu}
$$
 = $\frac{[65 \times 1.4667 \text{ ft/s}](20 \text{ ft})}{1.697 \times 10^{-4} \text{ ft}^2/\text{s}}$ = 1.124×10⁷ $\frac{1}{(\pm 2)^{1/2}}$

Then the friction coefficient:

$$
C_f = \frac{0.074}{\text{Re}_L^{1/5}} = \frac{0.074}{(1.124 \times 10^7)^{1/5}} = 0.002878
$$

The area of the top and side surfaces of the truck is

$$
A = A_{\text{top}} + 2A_{\text{side}} = 9 \times 20 + 2 \times 8 \times 20 = 500 \text{ ft}^2
$$

The drag force acting on these surfaces becomes

$$
F_D = C_f A \frac{\rho V^2}{2} = 0.002878 \times (500 \text{ ft}^2) \frac{(0.07350 \text{ lbm/ft}^3)(65 \times 1.4667 \text{ ft/s})^2}{2} \left(\frac{1 \text{ lbf}}{32.2 \text{ lbm} \cdot \text{ft/s}^2}\right) = 14.9 \text{ lbf}
$$

Noting that power is force times velocity, the power needed to overcome this drag force is

$$
\dot{W}_{\text{drag}} = F_D V = (14.9 \text{ lbf})(65 \times 1.4667 \text{ ft/s}) \left(\frac{1 \text{ kW}}{737.56 \text{ lbf} \cdot \text{ft/s}}\right) = 1.93 \text{ kW}
$$

Information and assumptions

Provided in problem statement

Find

Drag on cooling tower

Solution

The drag coefficient for an ellipsoid with $L/D = 25/5 = 5$ is $CD = 0.1$ in turbulent flow (from table 11-2) (± 2)

Noting that 1 m/s = 3.6 km/h, the velocity of the submarine is equivalent to $V = 40/3.6 = 11.11$ m/s. The frontal area of an ellipsoid is $A = \pi D^2/4$.

Then the drag force acting on the submarine becomes

In water:
$$
F_D = C_D A \frac{\rho V^2}{2} = (0.1)[\pi (5 \text{ m})^2 / 4] \frac{(1025 \text{ kg/m}^3)(11.11 \text{ m/s})^2}{2} \left(\frac{1 \text{ kN}}{1000 \text{ kg} \cdot \text{m/s}^2}\right) = 124.2 \text{ kN}
$$

In air: $F_D = C_D A \frac{\rho V^2}{2} = (0.1)[\pi (5 \text{ m})^2 / 4] \frac{(1.30 \text{ kg/m}^3)(11.11 \text{ m/s})^2}{2} \left(\frac{1 \text{ kN}}{1000 \text{ kg} \cdot \text{m/s}^2}\right) = 0.158 \text{ kN}$

Noting that power is force times velocity, the power needed to overcome this drag force is

In water:
\n
$$
\dot{W}_{\text{drag}} = F_D V = (124.2 \text{ kN})(11.11 \text{ m/s}) \left(\frac{1 \text{ kW}}{1 \text{ kN} \cdot \text{m/s}}\right) = 1380 \text{ kW}
$$
\n*In air:*
\n
$$
\dot{W}_{\text{drag}} = F_D V = (0.158 \text{ kN})(11.11 \text{ m/s}) \left(\frac{1 \text{ kW}}{1 \text{ kN} \cdot \text{m/s}}\right) = 1.75 \text{ kW}
$$
\n
$$
\left(\frac{+2}{2}, +2\right)
$$