Information and assumptions

Provided in problem statement Open channel flow down a 30° incline. Vertical depth is 1m. Width is 2m. Velocity profile is $u = y^{1/3}$ m/s.

Find

Discharge: Q.

Solution

$$Q = \int u dA$$

$$= \int_{0}^{1 \cdot \cos 30^{\circ}} y^{1/3} (2 dy)$$

$$= 2 \int_{0}^{0.866} y^{1/3} dy$$

$$= 2 \times \frac{3}{4} \times y^{4/3} \Big|_{0}^{0.866}$$

$$= 1.24 \, m^{3} / s$$
(Eqn. = 2)
(Inter. = 2)
(Ans. = 1)

$$\tau_{y=0.433} = \mu \frac{du}{dy}$$

$$= \mu \frac{1}{3} y^{-2/3} \Big|_{y=0.433}$$

$$= 1.00 \times 10^{-3} \times \frac{1}{3} y^{-2/3} \Big|_{y=0.433}$$

$$= 5.82 \times 10^{-4} N/m^{2}$$
(Eqn. = 3)
(Inter. = 1)
(Ans. = 1)

Information and assumptions

Provided in problem statement

The side tube samples the pressure for the undisturbed flow and the central tube senses the stagnation pressure

Find

Air flow rate

Solution

Bernoulli equation

$$p_0 + \rho V_0^2 / 2 = p_{stag} + 0$$

Or

$$V_0 = \sqrt{(2/\rho)(p_{stag} - p_0)}$$
 (E)

But

$$p_{stag} - p_0 = (0.067 - 0.023) \sin 30^{\circ} \times 0.7 \times 9810$$

$$= 151.1Pa \qquad (Eqn. + Inter. + Ans. = 1)$$

$$\rho = p/RT = 150,000/(287 \times (273 + 20))$$

$$1.784 kg/m^3 \qquad (Eqn. + Inter. + Ans. = 1)$$

Then

$$V_0 = \sqrt{(2/1.784)(151.3)} = 13.02 \, m/s$$
 (Inter. + Ans. = 1)
 $Q = VA = 13.02 \times (\pi/4) \times 0.10^2 = 0.1022 \, m/s$ (Inter. + Ans. = 1)

Information and assumptions

Provided in problem statement

From Table A.3
$$v = 1.41 \times 10^{-5} \, m^2 / s$$
 and $\rho = 1.25 \, kg / m^3$

Find

Power required to pull sign

Solution

Drag force

$$F_x = 2C_f BL\rho U_0^2 / 2$$
 (Eqn. = 4)

1/ --- -- 5/

$$Re_L = V_0 L/\nu = 30 \times 30/(1.41 \times 10^{-5})$$

$$Re_L = 6.38 \times 10^7$$
 (Inter. + Ans. =

Then from Fig 9-14

$$C_f = 0.00225$$
 (Inter. + Ans. = 2)

$$F_x = 0.00225 \times 2 \times 30 \times 2.0 \times 1.25 \times 30^2 / 2$$

= 151.9N (Inter. + Ans. = 1)

$$P = F_x V = 151.9 \times 30 = 4.56kW$$
 (Inter. + Ans. = 1)

Information and assumptions

Provided in problem statement

From Table 10.2, $k_s = 4.6 \times 10^{-5} m$

Find

- (a) Laminar or turbulent flow
- (b) Pressure at point A

Solution

.....

Re =
$$VD/v = 4Q/(\pi Dv)$$

= $4 \times 0.03/(\pi \times 0.15 \times (10^{-2}/820))$
= 2.09×10^4

Turbulent flow.

 $V = Q/A = 0.03/(\pi \times 0.15^{2}/4) = 1.698 \, m/s$ $k_{s}/D = 4.6 \times 10^{-5}/0.15 = 3.1 \times 10^{-4}$ From Fig. 10.8: f = 0.027 $h_{f} = f(L/D)(V^{2}/2g)$ $= 0.027 \times (1000/0.15)(1.698^{2}/(2 \times 9.81))$ (Eqn. = 2)

(Inter.+Ans.=1)

Energy equation:

= 26.4m

$$p_{A}/\gamma + V_{A}^{2}/2g + z_{A} = p_{B}/\gamma + V_{B}^{2}/2g + z_{B} + h_{f} \quad \text{(Eqn. = 3)}$$

$$p_{A} = 0.82 \times 9810 \times \left[\left(250000 / \left(0.82 \times 9810 \right) \right) + 20 + 26.4 \right]$$

$$p_{A} = 623kPa \quad \text{(Inter.+ Ans. = 1)}$$

Information and assumptions

Provided in problem statement

From Table 10.2,
$$k_s = 5 \times 10^{-4} \, ft$$

From Table A.5,
$$v = 1.41 \times 10^{-5} ft^2/s$$

From Table 10.3,
$$K_{\scriptscriptstyle b}=0.9$$
 , $~K_{\scriptscriptstyle v}=10$, $~K_{\scriptscriptstyle e}=0.5$, $~K_{\scriptscriptstyle E}=1.0$

Find

Pressure at point A

Solution

Energy equation:

$$p_{A}/\gamma + V_{1}^{2}/2g + z_{1} = p_{2}/\gamma + V_{2}^{2}/2g + z_{2} + \sum h_{L}$$

$$p_{A}/\gamma + 0 + 20 = 0 + 0 + 90$$

$$+ V^{2}/2g \left(K_{e} + 2K_{b} + K_{v} + f\left(L/D\right) + K_{E}\right) \text{ (Eqn = 6)}$$

$$V = Q/A = (50 \times 0.002228) / (\pi \times (2/12)^{2}/4) = 5.1$$

$$V^{2}/2g = 5.1^{2}/64.4 = 0.404$$

$$Re = 5.1 \times (2/12) / (1.41 \times 10^{-5}) = 6 \times 10^{4}$$

$$k_s/D = 5 \times 10^{-4}/(2/12) = 0.003$$

From Fig. 10.8:

$$f = 0.028$$

(Inter.+Ans.=2)

$$p_A = \gamma \left[70 + 0.404 \left(0.5 + 2 \times 0.9 + 10 + \left(0.028 \times 240 / (2/12) \right) + 1.0 \right) \right]$$

$$= 62.4 \times 91.7 = 5722 \, psfg = 39.7 \, psig \qquad \text{(Inter.+ Ans. = 2)}$$

Information and assumptions

Provided in problem statement From Table A.3, $\rho = 1.2 kg/m^3$

Find

Reduction in drag force

Solution

$$F_D = C_D A_p \rho V^2 / 2$$
 (Eqn. = 6)
 $F_{D_{reduction}} = 0.25 \times 0.78 \times 8.36 \times 1.2 \times (100000 / 3600)^2 / 2$
 $F_{D_{reduction}} = 755N$ (Inter.+ Ans. = 4)
