Review for Exam 2

Chapter 5: Mass, Momentum, and Enerqy equations

Flow rate and conservation of mass
general case
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General Form of Continuity Equation
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Simplification of Continuity Equation

1. Steady flow: 4 [pd¥ =0
dt cv

2. V = constant over discrete dA (flow sections):

[ pV-dA=3pV-A
CsS Cs

3. Incompressible fluid (p = constant)

| V- dA=—— f dv conservation of volume

4. Steady One-Dimensional Flow m a Conduit:
2pV-A=0
s

—P1ViA; T p2V2A; =0

for p =constant Q;=0Q;

Momentum Equation

RTITwithB=MVandp=V

> [Es +£B]=ﬂ | pVd¥V + [VpVg -dA
dt cv Cs
V = velocity referenced to an inertial frame (non-accelerating)
Vg = velocity referenced to control volume
Fs = surface forces + reaction forces (due to pressure and
viscous normal and shear stresses)

Fg = body force (due to gravity)



Applications of the Momentum Equation

Initial Setup and Signs

Jet deflected by a plate or a vane

Flow through a nozzle

Forces on bends

Problems involving non-uniform velocity distribution
Motion of a rocket

Force on rectangular sluice gate

Water hammer
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Important features for momentum equation:

1. Vector equations—> Need to derive component by component
2. Carefully define CV to include all external body and surface faces
" For example, :

(Re.Ry) = reaction
force on fluid

e, (Re.Ry) = reaction

ok —> ﬁ_.q_.‘,di torce on nozzle
t ek

Velocity must be referenced to a non-accelerating inertial frame.
Steady vs Unsteady flow

Uniform vs Nonuniform flow

Always use gage pressure

Pressure condition at a jet exit

Nookow



Energy Equation
The energy equation 1s derived from RTT with

B = E = total energy of the system

B=e=E/M = energy per unit mass

.. d V2 ) (V? )
Q-W=—|[yp|l —+gz+u [d¥V+|. p —+gz+u [V-dA
A X dt o \ 2 \ ) o \ 2
rate of work rate of change flux of energy
done by system of energy in CV out of CV

(ie, across CS)
rate of heat
transfer to sysem

Rate of Work Components: W =W, + W,

For convenience of analysis, work 1s divided into shaft work W,
and flow work W:

W; = net work done on the surroundings as a result of
normal and tangential stresses acting at the control
surfaces

= H'f?f pressure + ""Vf shear

W, = any other work transferred to the surroundings
usually in the form of a shaft which either takes
energy out of the system (turbine) or puts energy into
the system (pump)



Simplified form of energy equation

Simplification:

e No acceleration normal to the stream lines, pressure is hydrostatically
distributed.
e Internal energy u is considered as constant.

e Shaft work defined as Wy =W, — w,

h, = -

e Head loss defined as

The final form of simplified energy equation:

V - ). v, .
! +a, —+z + f? _ P +h,
/4 ‘2g
-W / mg %Q
=W / mg VV
129
o= II’3 /A = kinetic energy correction factor
AV? .
V= jI dd =0/ 4
‘\ y
V; & V; are average velocities
note that: o = 1 1f V 1s constant across the flow section
o = 1 1f V 1s nonuniform
S
— B
laminar flow o =2 turbulent flow o = 1.05 ~ 1 may

be used



Application of the energy, momentum, and continuity equation in
combination:

Energy:
\'& V7
DL, gz +h =224, Y247 +h, +h,
v 2g Py - 2g B
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Momentum:
SE =pV}A, —pViA, =pQ(V,—V,) | oneinletand

\ one outlet

Continuity: p = constant
AV, = AV, =Q = constant

For instance, the equations above can be applied to the flow from a small pipe to a
large pipe (abrupt expansion) or forces on transitions.

Example of abrupt expansion



Aem Tuameter Q = 70? lnjf'fS

Eﬁ 20-cm ::||-ar".eter q:h 2
- - e _‘:‘\\1.\' ¥ T i V""
e == head loss = .12
7 ===  (empirical equation)
L @
)
Fluid = water
p1 =250 kPa
- s D;y=30cm
— D> =20 cm
| Fy=?
= Control surface
Example of forces on transitions
Chapter 6: Differential Analysis of Fluid Flow
Fluid element kinematics
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The continuity equation in differential form
- In Cartesian coordinateS'

[pu-+—g—(pu]dx}dvdz
vk e Mag” _...._,: ] —qa\ 4-2._1"\ Ax"}dyde " outlet mass flux
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pudydz Ax
¥
P

ap 0 0 anit
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ot oy 0z differential form of

continuity equations
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Lav.(pv) =0
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pV-V+V-Vp
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Simplifications:

1. Steady flow: V-(pV)=0

2. p=constant: V-V =0

ie, —+—+—=0 3D

ou ov
T+T:0 2D
O0x Oy



-In Cylindrical polar coordinates:

v

The stream function v
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Important features of v

e Curves of constant y are streamlines of the flow

Streamline

o The difference in the value of y from one streamline to another is equal to
the volume flow rate per unit width between the two streamlines



let) 1))
The flow between two streamlines

dg = udy —vdx = a—wdwra—wdv =dy
Ox ay

a=], dv=y,~v,
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Navier-Stokes (NS) equations:

NS equation is a differential form of the conservation of momentum?!!

b
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Start from 1-D flow approximation:
>YE= 4 [ pVdV + [VpV.dA  1-D flow approximation

LY C\lv 2 C8 " >
B T = Z'(lnili )our B Z'(lnili )iu
where m = pA\_f; pdydzu, x-face
mass flux

d
7~ —(pV )dxdvdz
g (pV )dxds

A R P P
= | —(puV)+—(pvV)+—(pwV) |dxdydz
X oy oz

-

x-face y-face  z-face

>EF= p%dxd};’dz

where ZE = E.Ebod}-' + Z£surface

Notice that:
Body force—>due to external fields such as gravity or magnetics

E..Ebod}-' — dEgrav — pEdXd}’dZ
and gz—gﬁ: for gi z1
Le., ibod}f = _pglﬂ{
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Surface force—>due to the stresses acting on the sides of CS
Gy = - PO; + Ty

™

normal pressure viscous stress
- 'P+Txx TX}-‘ Txz
Tyx Py Tyz
Tox Ty -PT2
£su1‘f = _vp +V- Tij =V Gij Oy = _pSii T T
) 6i_1' =1 1= ]
Putting together the above results 8;=0 ]
.. . DV
ZL = Lbody + Lsurf =P
Dt
£b0dy = _pgk
£5111‘face - _vp +V Ty
DV 0oV
g - = =4 X . VE
Dt ot

The physical meanings of each term in NS equation are

P§=—PgE—VP+V'Tij

mertia body \ ‘\
force force  surface surface force

due to force due due to viscous
gravity top shear and normal
stresses

Write viscous shear and normal stresses in the form as

T = lEy 1 = coefficient of viscosity
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Sij

rate of strain tensor
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After some mathematical manipulation, NS and continuity equations are obtained
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Differential analysis of fluid flow

Couette Flow

lbt 'I-H'-h\., %t
X s 7 7 7 r 7 T 7 - Yo, uso

boundary conditions
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Generalization for inclined flow with a constant pressure
aradient

d y
Ly e
X &/ A T
- -\.-'r""' = I: L3 f-u"i*ﬁ**. s a
2 e 5 Tk, h"'ﬁ =5
5 _d® —
W - H e ‘E

His) =0

: dh
For favorable pressure gradient, —-<0, 7> 0
X

. dh
For adverse pressure gradient, U 0

T
f..-"

ﬁ <0 @ =

dx dx

Flow down an inclined plane

=g e T=p
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Chapter 7: Dimensional Analysis and Modeling

+ Buckingham II theorem

F(4.--4,)=0

jf{ﬁlﬁ---ﬁ,?_mlzﬂ m =m usually

[A———

F &
significant reduction in number of variables which reduces number of
experiments or calculations required

« Methods for determining IT;’s
1. Functional Relationship Method

Identify functional relationships F(A;) and {(I1;)by first
determining A;’s and then evaluating IL;’s

a. Inspection intuition
b. Step-by-step Method text
c. Exponent Method class

2. Nondimensionalize governing differential equations and
initial and boundary conditions
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Example: Hydraulic jump
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we assume that

Vi=Vi(p, g 1. y1. ¥2)
™orV,=Viyi/y,

Exponent method to determine IT;’s for Hydraulic jump

., Flg.Vi.y.y.p.l1) =0
use V, yi, p as (g[, le‘viij{%{

repeating variables 2T D LT

I1. = V¥ v.71 52l m=3 = r=n-m=3
= (LT'EIP)I*‘1 &)Yﬁ (ML*)* ML"'T"

L K1+}r1_321_1:0 }T1:321+1_K1:'1

T -X1 —1=0 Klz-l
M z +1=0 zZy =-1

I, = = or II] = YV _ Reynolds number = Re

Py V 1
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1_-[2 — R‘;XE f}‘rl}f pzl g
=(LTH" @L)” ML)? LT

L K3+}Tj—322+1:0 }ng—l—XQZI
T -x, —2=0 X, =-2
M z=0
) oy 1/ V
II,=V " y,g= i& 1,7 = = Froude number = Fr
a gY¥1

I = (LT)" (L) (ML) v

L K3+}’3+323+1:0 }’3:—1

T -X3 = 0

M -3z,=0

I1, =22 IT;' = 2L = depth ratio

Y1
f(H1_, 1_.[2, H_?,) =0
or, II,= IL(II,.IL)
i.e., F.=F/(Re, y2/y,)

)

LN

Common Dimensionless Parameters for Fluid Flow Problems

Re, Fr, We, Ma, C,, etc
Nondimensionalization of the Basic Equation

V-V=0

, V=V/U
DV : :
— = Vp+Re'VV _

o = VP X=X/I
[ = f{x'rﬂ /.L

p=(p+ pgz)/p[fs
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Similarity and Model testing

Hi model — 1_I1 prototype 1= 1-. Ir=1n-1m (111)
Similarity is classified as:

1. Geometric Similarity (similar length scale) : a = Lm /Lp

2. Kinematic Similarity (similar length and time scale)
3. Dynamic Similarity (similar length, time, and force scales)

(Re& Frscaling etc)
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