Review for Exam 2

Chapter 5: Mass, Momentum, and Energy equations

Flow rate and conservation of mass general case

$$Q = \int_{CS} \underline{V} \cdot \underline{n} dA$$
$$= \int_{CS} |\underline{V}| \cos \theta dA$$
$$\dot{m} = \int_{CS} \rho(\underline{V} \cdot \underline{n}) dA$$

average velocity: $\overline{V} = \frac{Q}{A}$

General Form of Continuity Equation

$$\frac{\mathrm{dM}}{\mathrm{dt}} = 0 = \frac{\mathrm{d}}{\mathrm{dt}} \int_{\mathrm{CV}} \rho \mathrm{d} \Psi + \int_{\mathrm{CS}} \rho \underline{\mathrm{V}} \cdot \underline{\mathrm{dA}}$$

or

$$\underbrace{\int_{CS} \rho \underline{V} \cdot \underline{dA}}_{CS} = -\frac{d}{dt} \int_{CV} \rho d \Psi$$

net rate of outflow of mass across CS rate of decrease of mass within CV

Simplification of Continuity Equation

- 1. Steady flow: $-\frac{d}{dt}\int_{CV} \rho d\Psi = 0$
- 2. $\underline{\mathbf{V}} = \text{constant over discrete } \underline{\mathbf{dA}}$ (flow sections):

$$\int_{CS} \rho \underline{V} \cdot \underline{dA} = \sum_{CS} \rho \underline{V} \cdot \underline{A}$$

- 3. Incompressible fluid ($\rho = \text{constant}$) $\int_{CS} \underline{V} \cdot \underline{dA} = -\frac{d}{dt} \int_{CV} d\Psi \qquad \text{conservation of volume}$
- 4. Steady One-Dimensional Flow in a Conduit: $\sum_{CS} \rho \underline{V} \cdot \underline{A} = 0$

$$-\rho_1 V_1 A_1 + \rho_2 V_2 A_2 = 0$$

for $\rho = constant$ $Q_1 = Q_2$

Momentum Equation

RTT with
$$B = M\underline{V}$$
 and $\beta = \underline{V}$

$$\sum [\underline{F}_{S} + \underline{F}_{B}] = \frac{d}{dt} \int_{CV} \rho \underline{V} d\Psi + \int_{CS} \underline{V} \rho \underline{V}_{R} \cdot \underline{dA}$$

$$\underline{V} = \text{velocity referenced to an inertial frame (non-accelerating)}$$

$$\underline{V}_{R} = \text{velocity referenced to control volume}$$

$$\underline{F}_{S} = \text{surface forces + reaction forces (due to pressure and viscous normal and shear stresses)}$$

$$\underline{F}_{B} = \text{body force (due to gravity)}$$

Applications of the Momentum Equation Initial Setup and Signs

- 1. Jet deflected by a plate or a vane
- 2. Flow through a nozzle
- 3. Forces on bends
- 4. Problems involving non-uniform velocity distribution
- 5. Motion of a rocket
- 6. Force on rectangular sluice gate
- 7. Water hammer

Important features for momentum equation:

- 1. Vector equations \rightarrow Need to derive component by component
- 2. Carefully define CV to include all external body and surface faces For example,

 (R_x, R_y) = reaction force on fluid

 (R_x, R_y) = reaction force on nozzle

- 3. Velocity must be referenced to a non-accelerating inertial frame.
- 4. Steady vs Unsteady flow
- 5. Uniform vs Nonuniform flow
- 6. Always use gage pressure
- 7. Pressure condition at a jet exit

Energy Equation The energy equation is derived from RTT with

B = E = total energy of the system

 $\beta = e = E/M$ = energy per unit mass

of energy in CV

(ie, across CS)

rate of heat transfer to sysem

<u>Rate of Work Components</u>: $\dot{W} = \dot{W}_s + \dot{W}_f$

For convenience of analysis, work is divided into shaft work Ws and flow work W_f

- $W_f =$ net work done on the surroundings as a result of normal and tangential stresses acting at the control surfaces
 - $= W_{f pressure} + W_{f shear}$
- $W_s =$ any other work transferred to the surroundings usually in the form of a shaft which either takes energy out of the system (turbine) or puts energy into the system (pump)

Simplified form of energy equation

Simplification:

- No acceleration normal to the stream lines, pressure is hydrostatically distributed.
- Internal energy u is considered as constant.
- Shaft work defined as $\dot{W}_{S} = \dot{W}_{t} \dot{W}_{p}$

• Head loss defined as
$$h_L = \frac{u_2 - u_1}{g} - \frac{Q}{g\dot{m}}$$

The final form of simplified energy equation:

$$\frac{p_1}{\gamma} + \alpha_1 \frac{V_1^2}{2g} + z_1 + h_p = \frac{p_2}{\gamma} + \alpha_2 \frac{V_2^2}{2g} + z_2 + h_t + h_L$$

$$h_p = \dot{W}_p / \dot{m}g = \frac{\dot{W}_p}{\gamma Q}$$

$$h_t = \dot{W}_t / \dot{m}g = \frac{\dot{W}_t}{\gamma Q}$$

$$\alpha = \frac{1}{A\overline{V}^2} \int_A V^3 dA = \text{kinetic energy correction factor}$$

$$\overline{V}_t = \frac{1}{A} \int_A V dA = Q / A$$

$$V_1 \& V_2 \text{ are average velocities}$$

note that: $\alpha = 1$ if V is constant across the flow section $\alpha > 1$ if V is nonuniform

Application of the energy, momentum, and continuity equation in combination:

Energy:

$$\frac{p_1}{\gamma} + \alpha_1 \frac{V_1^2}{2g} + z_1 + h_p = \frac{p_2}{\gamma} + \alpha_2 \frac{V_2^2}{2g} + z_2 + h_t + h_L$$

Momentum:

 $\sum F_{s} = \rho V_{2}^{2} A_{2} - \rho V_{1}^{2} A_{1} = \rho Q(V_{2} - V_{1})$ one inlet and one outlet $\rho = \text{constant}$

Continuity:

 $A_1V_1 = A_2V_2 = Q = constant$

For instance, the equations above can be applied to the flow from a small pipe to a large pipe (abrupt expansion) or forces on transitions.

Example of abrupt expansion

Chapter 6: Differential Analysis of Fluid Flow

Fluid element kinematics

- Translation $\mathbf{V} = u\hat{i} + v\hat{j} + w\hat{k}$
- Rotation $\omega = \omega_x \hat{i} + \omega_y \hat{j} + \omega_z \hat{k} = \frac{1}{2} \left(\frac{\partial w}{\partial y} \frac{\partial v}{\partial z} \right) \hat{i} + \frac{1}{2} \left(\frac{\partial u}{\partial z} \frac{\partial w}{\partial x} \right) \hat{j} + \frac{1}{2} \left(\frac{\partial v}{\partial x} \frac{\partial u}{\partial y} \right) \hat{k}$

• Linear Strain
$$\varepsilon_{xx} = \frac{\partial u}{\partial x}$$
, $\varepsilon_{yy} = \frac{\partial v}{\partial y}$, $\varepsilon_{zz} = \frac{\partial w}{\partial z}$

- Shear Strain $\varepsilon_{xy} = \varepsilon_{yx} = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right), \quad \varepsilon_{yz} = \varepsilon_{zy} = \frac{1}{2} \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \right), \quad \varepsilon_{zx} = \varepsilon_{xz} = \frac{1}{2} \left(\frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} \right)$
- Volumetric Strain Rate $\varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z}$

The continuity equation in differential form

- In Cartesian coordinates:

-In Cylindrical polar coordinates:

The stream function ψ

$$u = \frac{\partial \psi}{\partial y}, \quad v = -\frac{\partial \psi}{\partial x}$$
$$v_r = \frac{1}{r} \frac{\partial \psi}{\partial \theta}, \quad v_\theta = -\frac{\partial \psi}{\partial r}$$

Important features of ψ

• Curves of constant ψ are streamlines of the flow

• The difference in the value of ψ from one streamline to another is equal to the volume flow rate per unit width between the two streamlines

(a) The flow between two streamlines

$$dq = udy - vdx = \frac{\partial \psi}{\partial x}dx + \frac{\partial \psi}{\partial y}dy = d\psi$$
$$q = \int_{\psi_1}^{\psi_2} d\psi = \psi_2 - \psi_1$$

Navier-Stokes (NS) equations:

NS equation is a differential form of the conservation of momentum!!

Notice that:

<u>Body force</u> \rightarrow due to external fields such as gravity or magnetics

$$\sum \underline{F}_{body} = d\underline{F}_{grav} = \rho \underline{g} dx dy dz$$

and $\underline{g} = -g \hat{k}$ for $g \downarrow z \uparrow$
i.e., $\underline{f}_{body} = -\rho g \hat{k}$

<u>Surface force</u> \rightarrow due to the stresses acting on the sides of CS

The physical meanings of each term in NS equation are

Write viscous shear and normal stresses in the form as

 $\tau_{ij} = \mu \varepsilon_{ij}$ $\mu = \text{coefficient of viscosity}$

 ε_{ij} = rate of strain tensor

$$= \begin{bmatrix} \frac{\partial u}{\partial x} & \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\right) & \left(\frac{\partial w}{\partial x} + \frac{\partial u}{\partial z}\right) \\ \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right) & \frac{\partial v}{\partial y} & \left(\frac{\partial w}{\partial y} + \frac{\partial v}{\partial z}\right) \\ \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x}\right) & \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y}\right) & \frac{\partial w}{\partial z} \end{bmatrix}$$

After some mathematical manipulation, NS and continuity equations are obtained as:

$$x: \quad \rho \left[\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} \right] = -\frac{\partial p}{\partial x} + \mu \left[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right]$$
$$y: \quad \rho \left[\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} \right] = -\frac{\partial p}{\partial y} + \mu \left[\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right]$$
$$z: \quad \rho \left[\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} \right] = -\frac{\partial p}{\partial z} + \mu \left[\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2} \right]$$
$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$$

Differential analysis of fluid flow

Generalization for inclined flow with a constant pressure gradient

Chapter 7: Dimensional Analysis and Modeling

• Buckingham Π theorem

$$F(A_1, \cdots A_n) = 0$$
$$\Rightarrow f\left(\pi_1, \cdots \pi_{\underline{n-\hat{m}}}_{\underline{n-\hat{m}}}\right) = 0 \quad \hat{m} = m \text{ usually}$$

significant reduction in number of variables which reduces number of experiments or calculations required

- Methods for determining Π_i 's
 - 1. Functional Relationship Method

Identify functional relationships $F(A_i)$ and $f(\Pi_j)$ by first determining A_i 's and then evaluating Π_j 's

a.	Inspection	intuition
b.	Step-by-step Method	text
c.	Exponent Method	class

2. Nondimensionalize governing differential equations and initial and boundary conditions

Example: Hydraulic jump

we assume that

$$V_1 = V_1(\rho, g, \mu, y_1, y_2)$$

or $V_2 = V_1y_1/y_2$

Exponent method to determine Π_j 's for Hydraulic jump

use V, y₁, ρ as repeating variables $F(g,V_1,y_1,y_2,\rho,\mu) = 0$ $\frac{L}{T^2} \frac{L}{T} L L \frac{M}{L^3} \frac{M}{LT}$

$$\begin{split} \Pi_{1} &= V^{x1} y_{1}^{y1} \rho^{z1} \mu & m=3 \implies r=n-m=3 \\ &= (LT^{-1})^{x1} (L)^{y1} (ML^{-3})^{z1} ML^{-1}T^{-1} \\ L & x_{1} + y_{1} - 3z_{1} - 1 = 0 & y_{1} = 3z_{1} + 1 - x_{1} = -1 \\ T & -x_{1} & -1 = 0 & x_{1} = -1 \\ M & z_{1} & +1 = 0 & z_{1} = -1 \\ \Pi_{1} &= \frac{\mu}{\rho y_{1} V} & \text{or} & \Pi_{1}^{-1} = \frac{\rho y_{1} V}{\mu} = \text{Reynolds number} = \text{Re} \end{split}$$

$$\begin{aligned} \Pi_2 &= V^{x2} y_1^{y2} \rho^{z2} g \\ &= (LT^{-1})^{x2} (L)^{y2} (ML^{-3})^{z2} LT^{-2} \\ L & x_2 + y_2 - 3z_2 + 1 = 0 & y_2 = -1 - x_2 = 1 \\ T & -x_2 & -2 = 0 & x_2 = -2 \\ M & z_2 = 0 \\ \Pi_2 &= V^{-2} y_1 g = \frac{gy_1}{V^2} \quad \Pi_2^{-1/2} = \frac{V}{\sqrt{gy_1}} = \text{Froude number} = \text{Fr} \end{aligned}$$

$$\begin{aligned} \Pi_{3} &= (LT^{-1})^{x3} (L)^{y3} (ML^{-3})^{z3} y_{2} \\ L & x_{3} + y_{3} + 3z_{3} + 1 = 0 & y_{3} = -1 \\ T & -x_{3} = 0 \\ M & -3z_{3} = 0 \\ \Pi_{3} &= \frac{y_{2}}{y_{1}} & \Pi_{3}^{-1} = \frac{y_{1}}{y_{2}} = \text{depth ratio} \\ f(\Pi_{1}, \Pi_{2}, \Pi_{3}) &= 0 \\ \text{or,} & \Pi_{2} = \Pi_{2}(\Pi_{1}, \Pi_{3}) \\ \text{i.e.,} & F_{r} = F_{r}(\text{Re}, y_{2}/y_{1}) \end{aligned}$$

Common Dimensionless Parameters for Fluid Flow Problems

Re, Fr, We, Ma, C_p , etc

Nondimensionalization of the Basic Equation

$$\nabla \cdot \mathbf{V} = 0 \qquad \mathbf{V} = \mathbf{V}/U_0$$
$$\frac{D\mathbf{V}}{Dt} = -\nabla p + Re^{-1}\nabla^2 \mathbf{V} \qquad \mathbf{X} = \mathbf{X}/L$$
$$t = tU_0/L$$
$$p = (p + \rho gz)/\rho U_0^2$$

Similarity and Model testing

$$\Pi_{i \text{ model}} = \Pi_{i \text{ prototype}}$$
 $i = 1, r = n - \hat{m} (m)$

Similarity is classified as:

- 1. Geometric Similarity (similar length scale): $\alpha = L_m / L_p$
- 2. Kinematic Similarity (similar length and time scale)
- 3. Dynamic Similarity (similar length, time, and force scales) (Re& Fr scaling etc)