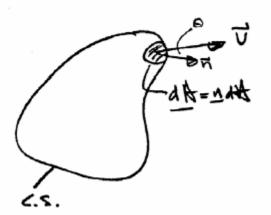
Review for Exam 2

Chapter 5: Mass, Bernoulli, and Energy equation

• <u>Flow rate and conservation of mass</u> general case



$$\begin{split} Q &= \int\limits_{CS} \underline{V} \cdot \underline{n} dA \\ &= \int\limits_{CS} |\underline{V}| \cos \theta dA \\ \dot{m} &= \int\limits_{CS} \rho(\underline{V} \cdot \underline{n}) dA \end{split}$$

average velocity: $\overline{V} = \frac{Q}{A}$

General Form of Continuity Equation

$$\frac{\mathrm{dM}}{\mathrm{dt}} = 0 = \frac{\mathrm{d}}{\mathrm{dt}} \int_{\mathrm{CV}} \rho \mathrm{d} \Psi + \int_{\mathrm{CS}} \rho \underline{\mathrm{V}} \cdot \underline{\mathrm{dA}}$$

or

$$\underbrace{\int \rho \underline{V} \cdot \underline{dA}}_{CS} = -\frac{d}{dt} \int \rho d \Psi$$

net rate of outflow of mass across CS rate of decrease of mass within CV

Simplification of Continuity Equation

- 1. Steady flow: $-\frac{d}{dt}\int_{CV} \rho d\Psi = 0$
- 2. $\underline{\mathbf{V}} = \text{constant over discrete } \underline{\mathbf{dA}}$ (flow sections):

$$\int_{CS} \rho \underline{V} \cdot \underline{dA} = \sum_{CS} \rho \underline{V} \cdot \underline{A}$$

- 3. Incompressible fluid ($\rho = \text{constant}$) $\int_{CS} \underline{V} \cdot \underline{dA} = -\frac{d}{dt} \int_{CV} d\Psi \qquad \text{conservation of volume}$
- 4. Steady One-Dimensional Flow in a Conduit: $\sum_{CS} \rho \underline{V} \cdot \underline{A} = 0$

$$-\rho_1 V_1 A_1 + \rho_2 V_2 A_2 = 0$$

for $\rho = \text{constant}$ $Q_1 = Q_2$

• Bernoulli Equations, Application, and Limitation

Assume the flow is

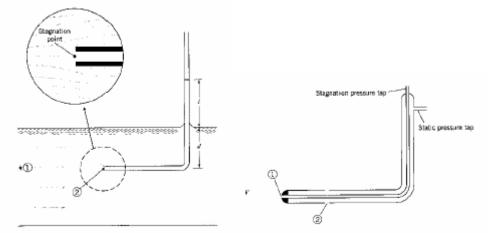
- Irrotational
- Inviscid
- Incompressible

$$p_1 + \frac{1}{2}\rho {V_1}^2 + \gamma z_1 = p_2 + \frac{1}{2}\rho {V_2}^2 + \gamma z_2$$

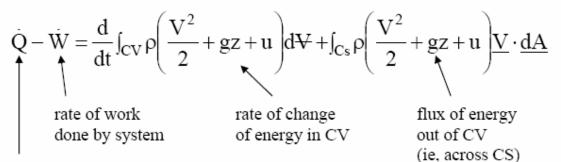
Bernoulli equation for steady state

Application:

Stagnation tube (right), Pitot tube (left)



• Energy Equation



rate of heat transfer to sysem

• <u>Simplified form of energy equation for steady one dimensional incompressible</u> <u>flow</u>

Simplification:

- No acceleration normal to the stream lines, pressure is hydrostatically distributed.
- Internal energy u is considered as constant.

• Shaft work defined as
$$W_S = W_t - W_p$$

• Head loss defined as
$$h_L = \frac{u_2 - u_1}{g} - \frac{\dot{Q}}{g\dot{m}}$$

The final form of simplified energy equation:

$$\frac{p_1}{\gamma} + \alpha_1 \frac{V_1^2}{2g} + z_1 + h_p = \frac{p_2}{\gamma} + \alpha_2 \frac{V_2^2}{2g} + z_2 + h_t + h_L$$

$$h_p = \dot{W}_p / \dot{m}g$$

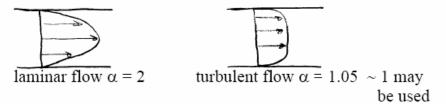
$$h_t = \dot{W}_t / \dot{m}g$$

$$\alpha = \frac{1}{A\bar{V}^2} \int_A V^3 dA = \text{kinetic energy correction factor}$$

$$\bar{V}_t = \frac{1}{A} \int_A V dA = Q / A$$

$$V_1 \& V_2 \text{ are average velocities}$$

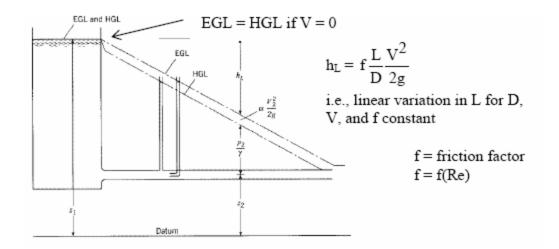
note that: $\alpha = 1$ if V is constant across the flow section $\alpha > 1$ if V is nonuniform



• HGL and EGL

$$\frac{p_1}{\gamma} + \alpha_1 \frac{V_1^2}{2g} + z_1 + h_p = \frac{p_2}{\gamma} + \alpha_2 \frac{V_2^2}{2g} + z_2 + h_t + h_L$$
Define $HGL = \frac{p}{\gamma} + z$
 $EGL = \frac{p}{\gamma} + z + \alpha \frac{V^2}{2g}$ point-by-point application is graphically displayed

<u>HGL corresponds to pressure tap measurement + z</u> <u>EGL corresponds to stagnation tube measurement + z</u>



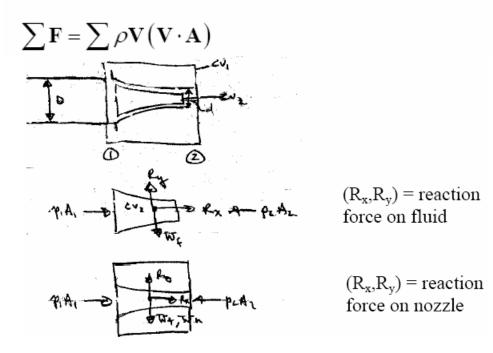
Chapter 6: Momentum Analysis of Flow System

• <u>Momentum Equation</u>

$$\sum \mathbf{F} = \frac{d}{dt} \int_{CV} \mathbf{V} \rho d \forall + \int_{CS} \mathbf{V} \rho \mathbf{V}_R \cdot d\mathbf{A}$$

sum of all external forces
acting on CS, i.e.,
pressure force, forces
transmitted through
solids, etc.

Special form for steady flow with uniform flow across discrete CS



Important features for momentum equation:

- 1. Vector equations
- 2. Carefully define CV to include all external body and surface faces
- 3. Velocity must be referenced to a non-accelerating inertial frame.
- 4. Steady vs Unsteady flow
- 5. Uniform vs Nonuniform flow
- 6. Always use gage pressure
- 7. Pressure condition at a jet exit

Chapter 7: Dimensional Analysis and Modeling

• Buckingham Π theorem

$$F(A_1,\cdots A_n)=0$$

$$\Rightarrow f\left(\pi_1, \cdots, \pi_{\underline{n-\hat{m}}}_{r}\right) = 0 \quad \hat{m} = m \text{ usually}$$

significant reduction in number of variables which reduces number of experiments or calculations required

- Methods for determining Π_i 's
 - 1. Functional Relationship Method

Identify functional relationships $F(A_i)$ and $f(\Pi_j)$ by first determining A_i 's and then evaluating Π_i 's

a. Inspection	intuition
b. Step-by-step Method	text
c. Exponent Method	class

- 2. Nondimensionalize governing differential equations and initial and boundary conditions
- <u>Common Dimensionless Parameters for Fluid Flow Problems</u> *Re, Fr, We, Ma, C_p*, etc

Nondimensionalization of the Basic Equation

$$\nabla \cdot \mathbf{V} = 0 \qquad \mathbf{V} = \mathbf{V}/U_0$$
$$\frac{D\mathbf{V}}{Dt} = -\nabla p + Re^{-1}\nabla^2 \mathbf{V} \qquad \mathbf{X} = \mathbf{X}/L$$
$$t = tU_0/L$$
$$p = (p + \rho gz)/\rho U_0^2$$

Similarity and Model testing

 $\prod_{i \text{ model}} = \prod_{i \text{ prototype}}$

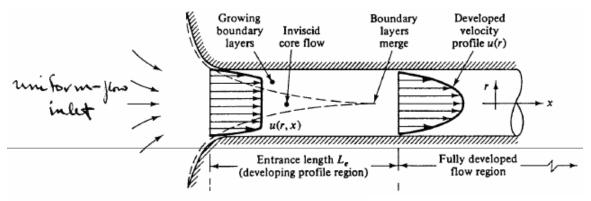
 $i = 1, r = n - \hat{m} (m)$

2

Similarity is classified as:

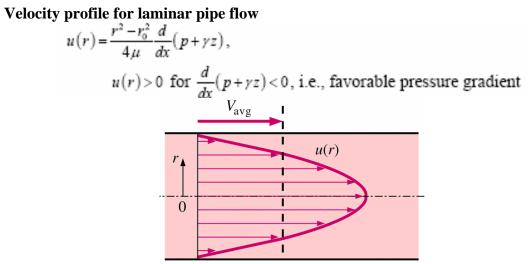
- 1. Geometric Similarity (similar length scale): $\alpha = L_m / L_p$
- 2. Kinematic Similarity (similar length and time scale)
- 3. Dynamic Similarity (similar length, time, and force scales) (Re& Fr scaling etc)

Chapter 8: Flow in Pipes



Entrance vs. fully developed flow: $L_e/D = f(\text{Re})$ Laminar vs. turbulent flow: Re_{crit} ≈ 2000

Laminar Flow in Pipes



Laminar flow

Head loss and friction factor for laminar pipe flow (These are exact solutions!!):

$$\frac{p_{1}}{\gamma} + \frac{V_{1}^{2}}{2g} + z_{1} = \frac{p_{2}}{\gamma} + \frac{V_{2}^{2}}{2g} + z_{2} + h_{L}$$

$$\Delta h = \left(\frac{p_{2}}{\gamma} + z_{2}\right) - \left(\frac{p_{1}}{\gamma} + z_{1}\right)$$

$$h_{L} = \frac{p_{1} - p_{2}}{\gamma} + (z_{1} - z_{2}) = -\Delta h$$

$$h_{L} = \frac{L}{\gamma} \left[-\frac{d}{ds} (p + \gamma z) \right] \qquad L = \text{length of pipe} = ds$$

$$h_{L} = \frac{L}{\gamma} \left[\frac{8\mu\overline{V}}{r_{o}^{2}} \right] = -\Delta h\alpha\overline{V} \qquad h_{L} = L \left[-\frac{d}{ds} \left(\frac{p}{\gamma} + z\right) \right]$$

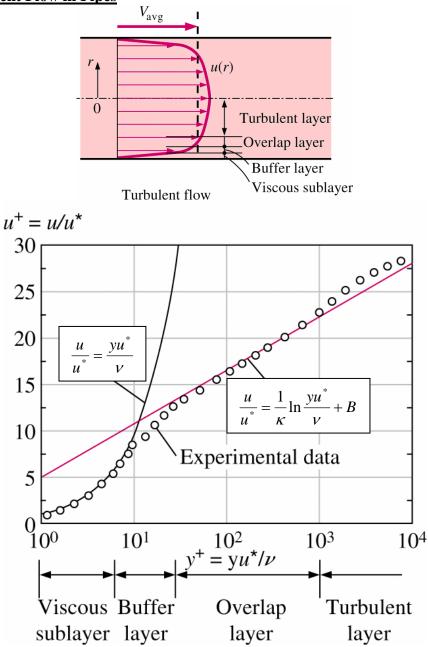
$$= L \left(-\frac{dh}{ds} \right)$$
or
$$h_{f} = h_{L} = \frac{32\mu L\overline{V}}{\gamma D^{2}} \qquad h_{f} = \text{head loss due to friction}$$

$$h_{L} = \frac{32\mu LV}{\gamma D^{2}} = f \frac{L}{D} \frac{V^{2}}{2g}$$

$$r_{0} = \frac{D}{4} \frac{\gamma h_{L}}{L} \Rightarrow h_{L} = \frac{4Lr_{0}}{D\gamma} = 4L \frac{1}{8} \rho V^{2} f f D\gamma = f \frac{L}{D} \frac{V^{2}}{2g}$$

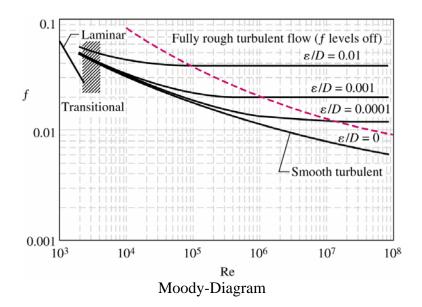
$$\therefore f = \frac{64}{Re} \qquad Re = \frac{VD}{V}$$

• <u>Turbulent Flow in Pipes</u>



Head losses and friction factor for turbulent pipe flow:

Friction factor: $1/\sqrt{f} = 1.14 - 2\log(k_s/D + 9.35/\text{Re}\sqrt{f})$, as shown in Moody diagram $k_s/D = \text{roughness parameter}$ $h_L = f \frac{L}{D} \frac{V^2}{2g} = h_1 - h_2$, $h_1 = \frac{p_1}{\gamma} + z_1$, $h_2 = \frac{p_2}{\gamma} + z_2$



- Types of problems for turbulent pipe flow
 - 1. Determine head loss

$$f = f(\operatorname{Re}, k_s f D)$$
$$h_L = f \frac{L}{D} \frac{V^2}{2g} = h_1 - h_2$$

2. Determine flow rate

$$V = \left[\frac{2gh_L}{LD}\right]^{\frac{1}{2}} f^{-\frac{1}{2}}$$

guess
$$f \Rightarrow V \Rightarrow \operatorname{Re} \Rightarrow f$$
, repeat to converge

3. Determine pipe size

$$D = \left[\frac{8LQ^2}{\pi^2 g h_L}\right]^{\frac{1}{5}} f^{\frac{1}{5}}$$

guess
$$f \Rightarrow D \Rightarrow \text{Re}\& k_s/D \Rightarrow f$$
, repeat to converge

• <u>Minor losses</u>

$$\frac{p_1}{\gamma} + z_1 + \alpha_1 \frac{V_1^2}{2g} + h_p = \frac{p_2}{\gamma} + z_2 + \alpha_2 \frac{V_2^2}{2g} + h_t + h_L + \sum_i h_{m_i}$$
$$h_{m_i} = \left(K \frac{V^2}{2g}\right)_i$$

(*K*: minor loss coefficient \rightarrow Depending on the shape of the pipe inlet/exit/curvature)

