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Chapter 5 Mass, Momentum, and Energy Equations 

1. Reynolds Transport Theorem (RTT) 
 

𝑑𝐵𝑠𝑦𝑠
𝑑𝑡

=
𝜕
𝜕𝑡
� 𝛽𝜌𝑑V
𝐶𝑉�������

time rate of change 
of 𝐵 in 𝐶𝑉

+ � 𝛽𝜌𝑉𝑅 ⋅ 𝑑𝐴
𝐶𝑆���������
net out�lux of 𝐵 
from 𝐶𝑉 across 𝐶𝑆

 

where,  𝐵 = 𝑚𝛽,  𝑉𝑅 = 𝑉 − 𝑉𝑆 , 𝑉 = fluid velocity, 𝑉𝑆 = 𝐶𝑆 velocity, and 

 𝑑𝐴 = 𝒏�𝑑𝐴 where 𝒏� is outward normal vector, 𝑉 ⋅ 𝑑𝐴 = 𝑉 ⋅ 𝒏�𝑑𝐴 (- inlet, + outlet) 

For a fixed control volume,  𝑽𝑹 = 𝑽 (𝑽𝑺 = 𝟎): 
Parameter 𝑩 𝜷 RTT Equation 

Mass  𝑚 1 
𝑑𝑚
𝑑𝑡

=
𝜕
𝜕𝑡
� 𝜌𝑑V
𝐶𝑉

+ � 𝜌𝑉 ⋅ 𝑑𝐴
𝐶𝑆

 

Momentum 𝑚𝑉 𝑉 
𝑑�𝑚𝑉�
𝑑𝑡

=
𝜕
𝜕𝑡
� 𝑉𝜌𝑑V
𝐶𝑉

+ � 𝑉𝜌𝑉 ⋅ 𝑑𝐴
𝐶𝑆

 

Energy 𝐸 𝑒 
𝑑𝐸
𝑑𝑡

=
𝜕
𝜕𝑡
� 𝑒𝜌𝑑V
𝐶𝑉

+� 𝑒𝜌𝑉 ⋅ 𝑑𝐴
𝐶𝑆

 

2. Conservation of Mass – The Continuity Equation 

𝑑𝑚
𝑑𝑡

=
𝜕
𝜕𝑡
� 𝜌𝑑V
𝐶𝑉

+ � 𝜌𝑉 ⋅ 𝑑𝐴
𝐶𝑆

= 0 

Special cases: 
1) Steady flow: ∫ 𝜌𝑉 ⋅ 𝑑𝐴𝐶𝑆 = 0 

2) Incompressible fluid (𝜌 =constant): ∫ 𝑉 ⋅ 𝑑𝐴𝐶𝑆 = − 𝜕
𝜕𝑡 ∫ 𝑑V𝐶𝑉  

3) 𝑉 = constant over discrete 𝑑𝐴: ∫ 𝜌𝑉 ⋅ 𝑑𝐴𝐶𝑆 = ∑ 𝜌𝑉 ⋅ 𝐴𝐶𝑆  

4) Steady one-dimensional flow in a conduit: ∑ 𝜌𝑉 ⋅ 𝐴𝐶𝑆 = 0 ⇒ 

  𝜌1𝑉1𝐴1 = 𝜌2𝑉2𝐴2     ⇒ if 𝜌 = constant, 𝑉1𝐴1 = 𝑉2𝐴2 or 𝑄1 = 𝑄2 

Some useful definitions: 
• Mass flux (mass flow rate) �̇� = ∫ 𝜌𝑉 ⋅ 𝑑𝐴𝐴       (if 𝜌 = constant , �̇� = 𝜌𝑄) 

• Volume flux (flow rate)  𝑄 = ∫ 𝑉 ⋅ 𝑑𝐴𝐴          (if 𝑉 = constant, 𝑄 = 𝑉 ⋅ 𝐴) 

• Average velocity  𝑉� = 𝑄/𝐴 



Reviews for Exam2 Fall 2010 
 
3. Newton’s Second Law - Momentum Equation 

𝑑�𝑚𝑉�
𝑑𝑡

=
𝜕
𝜕𝑡
� 𝑉𝜌𝑑V
𝐶𝑉

+ � 𝑉𝜌𝑉 ⋅ 𝑑𝐴
𝐶𝑆�������������������������

= 𝑚𝑎

= ∑𝐹 

where ∑𝐹 = ∑𝐹𝐵 +∑𝐹𝑆 = vector sum of all external forces acting on 𝐶𝑉 including body forces ∑𝐹𝐵 (ex: 
gravity force) and surface forces ∑𝐹𝑆 (ex: pressure force, and shear forces, etc.) 

Special cases: 
1) Steady flow: 𝜕

𝜕𝑡 ∫ 𝑉𝜌𝑑V𝐶𝑉 = 0 

2) Uniform flow across 𝐴: ∫ 𝑉𝜌𝑉 ⋅ 𝑑𝐴𝐶𝑆 = ∑𝑉𝜌𝑉 ⋅ 𝑑𝐴 

Examples: 
Flow type ∑𝑭 ∑𝑽𝝆𝑽 ⋅ 𝒅𝑨 Continuity Eq. or 

Bernoulli Eq. 
Deflecting vane 

 

∑𝐹𝑥 = 𝐹𝑥 
 
∑𝐹𝑦 = 𝐹𝑦 

x-component: 
𝜌𝑉1(−𝑉1𝐴1)

+ 𝜌(−𝑉2 cos 𝜃)(𝑉2𝐴2) 
 
y-component: 
𝜌(−𝑉2 sin𝜃)(𝑉2𝐴2) 

𝑉1𝐴1 = 𝑉2𝐴2 = 𝑄 

Nozzle 

 

∑𝐹𝑥 = 𝑅𝑥 + 𝑝1𝐴1 
           −𝑝2𝐴2 
 
∑𝐹𝑦 = 𝑅𝑦 −𝑊Fluiud 
                    −𝑊Nozzle 

x-component: 
𝜌𝑉1(−𝑉1𝐴1)

+ 𝜌𝑉2(𝑉2𝐴2) 
 
y-component: 0 

𝐴1𝑉1 = 𝐴2𝑉2 = 𝑄 
 

𝑝1 +
𝜌𝑉12

2
=
𝜌𝑉22

2
 

 
(∵ 𝑧1 = 𝑧1, 𝑝2 = 0) 

Bend 

 

∑𝐹𝑥 = 𝑅𝑥 + 𝑝1𝐴1 
           −𝑝2𝐴2 cos 𝜃 
 
∑𝐹𝑦

= 𝑅𝑦 + 𝑝2𝐴2 sin𝜃 
    −𝑊Fluiud −𝑊Nozzle 

x-component: 
𝜌𝑉1(−𝑉1𝐴1)

+ 𝜌(𝑉2 cos 𝜃)(𝑉2𝐴2) 
 
y-component: 
𝜌(−𝑉2 sin𝜃)(𝑉2𝐴2) 

𝐴1𝑉1 = 𝐴2𝑉2 = 𝑄 
 

Sluice gate 

 

∑𝐹𝑥 = 𝐹𝐺𝑊  
                   +𝛾 𝑦1

2
(𝑦1𝑏) 

                  − 𝛾 𝑦2
2

(𝑦2𝑏)  
              
∑𝐹𝑦 = 0 

x-component: 
𝜌𝑉1(−𝑉1𝐴1)

+ 𝜌𝑉2(𝑉2𝐴2) 
 
y-component: 0 

𝑉1(𝑦1𝑏) = 𝑉2(𝑦2𝑏)
= 𝑄 

 
𝑉12

2𝑔
+ 𝑦1

=
𝑉22

2𝑔
+ 𝑦2 + ℎ𝐿 

(∵ 𝑝1 = 𝑝2 = 0) 
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4. First Law of Thermodynamics - Energy Equation 

𝑑𝐸
𝑑𝑡

= 𝜕
𝜕𝑡 ∫ 𝑒𝜌𝑑V𝐶𝑉 + ∫ 𝑒𝜌𝑉 ⋅ 𝑑𝐴𝐶𝑆 = �̇� − �̇� 

where, 𝑒 = 𝑢� + 𝑒𝑘 + 𝑒𝑝 = 𝑢� + 𝑉2

2
+ 𝑔𝑧 and �̇� = �̇�s + ��̇�fp + �̇�fs� = �̇�𝑠 + �̇�fp = ��̇�t − �̇�p� + �̇�fp 

or 

�̇� − �̇�𝑠 =
𝜕
𝜕𝑡
� 𝜌�

𝑉2

2
+ 𝑔𝑧 + 𝑢��𝑑V

𝐶𝑉
+ � 𝜌�

𝑉2

2
+ 𝑔𝑧 + 𝑢� +

𝑝
𝜌�

𝑉 ⋅ 𝑑𝐴
𝐶𝑆

 

Simplified Form of the Energy Equation (steady, one-dimensional pipe flow): 

𝑝𝑜𝑢𝑡
𝜌

+
𝑉𝑜𝑢𝑡2

2
+ 𝑔𝑧𝑜𝑢𝑡 =

𝑝𝑖𝑛
𝜌

+
𝑉𝑖𝑛2

2
+ 𝑔𝑧𝑖𝑛 + 𝑤𝑠 − loss 

where 𝑤𝑠 = �̇�𝑠 �̇�⁄ , loss = 𝑢�𝑜𝑢𝑡 − 𝑢�𝑖𝑛 − 𝑞, and 𝑞 = 𝑄/�̇�.   

For non-uniform flows, 

𝑝𝑖𝑛
𝛾

+ 𝛼𝑖𝑛
𝑉𝑖𝑛2

2𝑔
+ 𝑧𝑖𝑛 + ℎ𝑝 =

𝑝𝑜𝑢𝑡
𝛾

+ 𝛼𝑜𝑢𝑡
𝑉𝑜𝑢𝑡2

2𝑔
+ 𝑧𝑜𝑢𝑡 + ℎ𝑡�������������������������������������

Mechanical energy

+ ℎ𝐿�
Thermal
energy

 

• pump head ℎ𝑝 = �̇�𝑝 �̇�𝑔⁄ = �̇�𝑝 𝜌𝑄𝑔⁄ = �̇�𝑝 𝛾𝑄⁄   
• turbine head ℎ𝑡 = �̇�𝑡 �̇�𝑔⁄   
• head loss ℎ𝐿 = (𝑢�2 − 𝑢�1) 𝑔⁄ − �̇� �̇�𝑔⁄ > 0 
• 𝛼 : kinetic energy correction factor (𝛼 = 1 for uniform flow across 𝐶𝑆) 
• 𝑉 in energy equation refers to average velocity 𝑉�  

Hydraulic and Energy Grade Lines 
• Hydraulic Grade Line: 𝐻𝐺𝐿 = 𝑝

𝛾
+ 𝑧 

• Energy Grade Line: 𝐸𝐺𝐿 = 𝑝
𝛾

+ 𝑧 + 𝛼 𝑉2

2𝑔
 

𝐸𝐺𝐿𝑖𝑛 + ℎ𝑝 = 𝐸𝐺𝐿𝑜𝑢𝑡 + ℎ𝑡 + ℎ𝐿 
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Chapter 6 Differential Analysis of Fluid Flow 

1. Fluid Element Kinematics 
Fluid element motion consists of translation, linear deformation, rotation, and angular deformation. 

 

• Linear deformation(dilatation): ∇ ⋅ 𝑉 ⇒ if the fluid is incompressible, ∇ ⋅ 𝑉 = 0 
• Rotation(vorticity): 𝜉 = 2𝜔 = ∇ × 𝑉 ⇒ if the fluid is irrotational, ∇ × 𝑉 = 0  

• Angular deformation is related to shearing stress: 𝜏𝑖𝑗 = 2𝜇𝜀𝑖𝑗   

2. Mass conservation 

 
𝜕𝜌
𝜕𝑡

+ ∇ ⋅ �𝜌𝑉� = 0 

For a steady and incompressible flow: ∇ ⋅ 𝑉 = 0 

3. Momentum conservation 

𝜌 �
𝜕𝑉
𝜕𝑡

+ 𝑉 ⋅ ∇𝑉����������
𝑎

= −𝜌𝑔𝑘����
body force due to
gravity force

−∇𝑝�
pressure 
force

+ ∇ ⋅ 𝜏𝑖𝑗���
viscous shear

force���������������
surface force

 

For Newtonian incompressible fluid the shear stress is propotional to the rate of strain, ∇ ⋅ 𝜏𝑖𝑗 = 𝜇∇2𝑉.     

4. Navier-Stokes Equations 

1) Cartesian coordinates 
Continuity: 

 𝜕𝑢
𝜕𝑥

+ 𝜕𝑣
𝜕𝑦

+ 𝜕𝑤
𝜕𝑧

= 0 

Momentum: 

 𝜌 �𝜕𝑢
𝜕𝑡

+ 𝑢 𝜕𝑢
𝜕𝑥

+ 𝑣 𝜕𝑢
𝜕𝑦

+ 𝑤 𝜕𝑢
𝜕𝑧
� = −𝜕𝑝

𝜕𝑥
+ 𝜌𝑔𝑥 + 𝜇 �𝜕

2𝑢
𝜕𝑥2

+ 𝜕2𝑢
𝜕𝑦2

+ 𝜕2𝑢
𝜕𝑧2

� 

 𝜌 �𝜕𝑣
𝜕𝑡

+ 𝑢 𝜕𝑣
𝜕𝑥

+ 𝑣 𝜕𝑣
𝜕𝑦

+ 𝑤 𝜕𝑣
𝜕𝑧
� = −𝜕𝑝

𝜕𝑦
+ 𝜌𝑔𝑦 + 𝜇 �𝜕

2𝑣
𝜕𝑥2

+ 𝜕2𝑣
𝜕𝑦2

+ 𝜕2𝑣
𝜕𝑧2

� 

 𝜌 �𝜕𝑤
𝜕𝑡

+ 𝑢 𝜕𝑤
𝜕𝑥

+ 𝑣 𝜕𝑤
𝜕𝑦

+ 𝑤 𝜕𝑤
𝜕𝑧
� = −𝜕𝑝

𝜕𝑧
+ 𝜌𝑔𝑧 + 𝜇 �𝜕

2𝑤
𝜕𝑥2

+ 𝜕2𝑤
𝜕𝑦2

+ 𝜕2𝑤
𝜕𝑧2

� 
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2) Cylindrical coordinates: 
Continuity: 

 1
𝑟
𝜕(𝑟𝑣𝑟)
𝜕𝑟

+ 1
𝑟
𝜕𝑣𝜃
𝜕𝜃

+ 𝜕𝑣𝑧
𝜕𝑧

= 0 

Momentum: 

  𝜌 �𝜕𝑣𝑟
𝜕𝑡

+ 𝑣𝑟
𝜕𝑣𝑟
𝜕𝑟

+ 𝑣𝜃
𝑟
𝜕𝑣𝑟
𝜕𝜃

− 𝑣𝜃
2

𝑟
+ 𝑣𝑧

𝜕𝑣𝑟
𝜕𝑧
� = −𝜕𝑝

𝜕𝑟
+ 𝜌𝑔𝑟 + 𝜇 �1

𝑟
𝜕
𝜕𝑟
�𝑟 𝜕𝑣𝑟

𝜕𝑟
� − 𝑣𝑟

𝑟2
+ 1

𝑟2
𝜕2𝑣𝑟
𝜕𝜃2

− 2
𝑟2

𝜕𝑣𝜃
𝜕𝜃

+ 𝜕2𝑣𝑟
𝜕𝑧2

�  

  𝜌 �𝜕𝑣𝜃
𝜕𝑡

+ 𝑣𝑟
𝜕𝑣𝜃
𝜕𝑟

+ 𝑣𝜃
𝑟
𝜕𝑣𝜃
𝜕𝜃

+ 𝑣𝑟𝑣𝜃
𝑟

+ 𝑣𝑧
𝜕𝑣𝜃
𝜕𝑧
� = −𝜕𝑝

𝜕𝜃
+ 𝜌𝑔𝜃 + 𝜇 �1

𝑟
𝜕
𝜕𝑟
�𝑟 𝜕𝑣𝜃

𝜕𝑟
� − 𝑣𝜃

𝑟2
+ 1

𝑟2
𝜕2𝑣𝜃
𝜕𝜃2

+ 2
𝑟2

𝜕𝑣𝑟
𝜕𝜃

+ 𝜕2𝑣𝜃
𝜕𝑧2

�  

  𝜌 �𝜕𝑣𝑧
𝜕𝑡

+ 𝑣𝑟
𝜕𝑧
𝜕𝑟

+ 𝑣𝜃
𝑟
𝜕𝑣𝑧
𝜕𝜃

+ 𝑣𝑧
𝜕𝑣𝑧
𝜕𝑧
� = −𝜕𝑝

𝜕𝑧
+ 𝜌𝑔𝑧 + 𝜇 �1

𝑟
𝜕
𝜕𝑟
�𝑟 𝜕𝑣𝑧

𝜕𝑟
� + 1

𝑟2
𝜕2𝑣𝑧
𝜕𝜃2

+ 𝜕2𝑣𝑧
𝜕𝑧2

�  

4. Exact solutions of NS Equations 

Ex 1) Couette Flow (without pressure gradient) 
Assumptions: laminar, steady, 2-D, incompressible, ignore 
gravity, no pressure gradient 

• Continuity: 𝜕𝑢
𝜕𝑥

= 0 

• Momentum: 0 = 𝜇 𝜕2𝑢
𝜕𝑦2

 

• B.C.: 𝑢(ℎ) = 𝑈, 𝑢(0) = 0 

⇒ 𝑢(𝑦) = 𝑈
𝑏
𝑦 

Shear stress at the bottom wall: 𝜏𝑤 = 𝜇 �𝑑𝑢
𝑑𝑦
�
𝑦=0

= 𝜇𝑈
𝑏

 

Ex 2) Circular pipe (with constant pressure gradient) 
Assumptions: laminar, steady, incompressible, fully-developed, constant pressure gradient 

• Continuity:  1
𝑟
𝜕(𝑟𝑣𝑟)
𝜕𝑟

= 0 

• z-Momentum:  0 = − 𝜕𝑝
𝜕𝑧 

+ 𝜇 �1
𝑟
𝜕
𝜕𝑟
�𝑟 𝜕𝑣𝑧

𝜕𝑟
�� 

• B.C.: 𝑣𝑟(𝑟 = 0) = 0, 𝑣𝑧(𝑟 = 0) ≠ ∞, 
𝑣𝑧(𝑟 = 𝑅) = 0 

⇒ 𝑣𝑧(𝑟) = 1
4𝜇
�𝜕𝑝
𝜕𝑧
� (𝑟2 − 𝑅2) 

1) Flow rate: 𝑄 = ∫ 𝑣𝑧𝑑𝐴
𝑅
0 = −𝜋𝑅4

8𝜇
�𝜕𝑝
𝜕𝑧
� = 𝜋𝑅4Δ𝑝

8𝜇ℓ
       ∵  −𝜕𝑝

𝜕𝑧
= Δ𝑝

ℓ
 

2) Mean velocity: 𝑉� = 𝑄
𝐴

= 𝑅2Δ𝑝
8𝜇ℓ

 

3) Maximum velocity: 𝑉𝑚𝑎𝑥 = 𝑣𝑧(0) = 𝑅2Δ𝑝
4𝜇ℓ

= 2𝑉�  
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Chapter 7 Dimensional Analysis and Modeling 

1. Buckingham Pi Theorem 
For any physically meaningful equation involving 𝑘 variables, such as 

𝑢1 = 𝑓(𝑢2,𝑢3,⋯ ,𝑢𝑘) 

with minimum number of reference dimensions 𝑟, the equation can be rearranged into product of  
𝑘 − 𝑟 pi terms. 

Π1 = 𝜙(Π2,Π3,⋯ ,Π𝑘−𝑟) 

Example – Exponent method:  
Δ𝑝ℓ = 𝑓(𝐷,𝜌, 𝜇,𝑉) 

where, Δ𝑝𝑒𝑙𝑙 =̇ 𝐹𝐿−3; 𝐷 =̇ 𝐿; 𝜌 =̇ 𝐹𝐿−4𝑇2; 𝜇 =̇ 𝐹𝐿−2𝑇; 𝑉 =̇ 𝐿𝑇−1.  Then, the number of pi terms = 
𝑘 − 𝑟 = 5 − 3 = 2. 

Π1 = Δ𝑝ℓ𝐷𝑎𝑉𝑏𝜌𝑐 

It follows that 

(𝐹𝐿−3)(𝐿)𝑎(𝐿𝑇−1)𝑏(𝐹𝐿−4𝑇2)𝑐 = 𝐹0𝐿0𝑇0 

                          1 + 𝑐 = 0 (for 𝐹) 
     −3 + 𝑎 + 𝑏 − 4𝑐 = 0 (for 𝐿) 
                     −𝑏 + 2𝑐 = 0 (for 𝑇) 

so that 𝑎 = 1, 𝑏 = −2, 𝑐 = −1, and therefore 

Π1 =
Δ𝑝ℓ𝐷
𝜌𝑉2

 

Π2 = 𝜇𝐷𝑎𝑉𝑏𝜌𝑐 

It follows that  

(𝐹𝐿−2𝑇)(𝐿)𝑎(𝐿𝑇−1)𝑏(𝐹𝐿−4𝑇2)𝑐 = 𝐹0𝐿0𝑇0 

Similarly for Π1,  

Π2 =
𝜇

𝐷𝑉𝜌
 

Then, 

Δ𝑝ℓ𝐷
𝜌𝑉2

= 𝑓 �
𝜇

𝐷𝑉𝜌
� 
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2. Common Dimensionless Parameters for Fluid Flow Problems. 
Variable velocity density gravity viscosity Surface 

tension 
compres
sibility 

Pressure 
change 

Length 

Symbol 𝑉 𝜌 𝑔 𝜇 𝜎 𝐾 Δ𝑝 𝐿 

Unit (SI) m/s kg/m3 m/s2 N ⋅ s/m2 N/m N/m2 N/m2 m 

𝑴𝑳𝑻 𝐿𝑇−1 𝑀𝐿−3 𝐿𝑇−2 𝑀𝐿−1𝑇−1 𝑀𝑇−2 𝑀𝐿−1𝑇−2 𝑀𝐿−1𝑇−2 𝐿 

𝑭𝑳𝑻 𝐿𝑇−1 𝐹𝑇2𝐿−4 𝐿𝑇−2 𝐹𝑇𝐿−2 𝐹𝐿−1 𝐹𝐿−2 𝐹𝐿−2 𝐿 
 

Dimensionless 
Groups 

Symbol Definition Interpretation 

Reynolds number Re 
𝜌𝑉𝐿
𝜇

 
inertia force
viscous force

=
𝜌𝑉2 𝐿⁄
𝜇𝑉 𝐿2⁄  

Froude number Fr 
𝑉
�𝑔𝐿

 inertia force
gravity force

=
𝜌𝑉2 𝐿⁄
𝛾

 

Weber number We 𝜌𝑉2𝐿
𝜎

 
inertia force

surface tension force
=
𝜌𝑉2 𝐿⁄
𝜎 𝐿2⁄  

Mach number Ma 
𝑉

�𝐾 𝜌⁄
=
𝑉
𝑎

 �
indertia force

compressibility force
 

Euler number Cp 
Δ𝑝
𝜌𝑉2

 
pressure force

inertia force
=

Δ𝑝 𝐿⁄
𝜌𝑉2 𝐿⁄

 

 

3. Similarity and Model Testing 
If all relevant dimensionless parameters have the same corresponding values for model and prototype, 
flow conditions for a model test are completely similar to those for prototype. 

Πmodel = Πprototype 

Model Testing  
1) Fr similarity Fr𝑚 = Fr𝑝 

 
𝑉𝑚

�𝑔𝐿𝑚
= 𝑉𝑝

�𝑔𝐿𝑝
   ⇒ 𝑉𝑚 = √𝛼𝑉𝑝 Froude scaling, where 𝛼 = 𝐿𝑚 𝐿𝑝⁄  

2) Re similarity Re𝑚 = Re𝑝 

 
𝑉𝑚𝐿𝑚
𝜈𝑚

= 𝑉𝑝𝐿𝑝
𝜈𝑝

   ⇒ 
𝜈𝑚
𝜈𝑝

= 𝑉𝑚𝐿𝑚
𝑉𝑝𝐿𝑝

= 𝛼
3
2  
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