Chapter 5 Mass, Momentum, and Energy Equations

1. Reynolds Transport Theorem (RTT)

 $\frac{dB_{sys}}{dt} = \underbrace{\frac{\partial}{\partial t} \int_{CV} \beta \rho d\Psi}_{\text{time rate of change}} + \underbrace{\int_{CS} \beta \rho \underline{V}_R \cdot d\underline{A}}_{\text{net outflux of } B}}_{\text{from } CV}$

where, $B = m\beta$, $\underline{V}_R = \underline{V} - \underline{V}_S$, $\underline{V} =$ fluid velocity, $\underline{V}_S = CS$ velocity, and

 $d\underline{A} = \hat{n}dA$ where \hat{n} is outward normal vector, $\underline{V} \cdot d\underline{A} = \underline{V} \cdot \hat{n}dA$ (- inlet, + outlet)

For a fixed control volume, $\underline{V}_R = \underline{V} (\underline{V}_S = \mathbf{0})$:

Parameter	В	β	RTT Equation
Mass	т	1	$\frac{dm}{dt} = \frac{\partial}{\partial t} \int_{CV} \rho d\Psi + \int_{CS} \rho \underline{V} \cdot d\underline{A}$
Momentum	m <u>V</u>	<u>V</u>	$\frac{d(\underline{m}\underline{V})}{dt} = \frac{\partial}{\partial t} \int_{CV} \underline{V} \rho d\Psi + \int_{CS} \underline{V} \rho \underline{V} \cdot d\underline{A}$
Energy	Ε	е	$\frac{dE}{dt} = \frac{\partial}{\partial t} \int_{CV} e\rho d\Psi + \int_{CS} e\rho \underline{V} \cdot d\underline{A}$

2. Conservation of Mass - The Continuity Equation

$$\frac{dm}{dt} = \frac{\partial}{\partial t} \int_{CV} \rho d\Psi + \int_{CS} \rho \underline{V} \cdot d\underline{A} = 0$$

Special cases:

- 1) Steady flow: $\int_{CS} \rho \underline{V} \cdot d\underline{A} = 0$
- 2) Incompressible fluid (ρ =constant): $\int_{CS} \underline{V} \cdot d\underline{A} = -\frac{\partial}{\partial t} \int_{CV} d\Psi$
- 3) \underline{V} = constant over discrete $d\underline{A}$: $\int_{CS} \rho \underline{V} \cdot d\underline{A} = \sum_{CS} \rho \underline{V} \cdot \underline{A}$
- 4) Steady one-dimensional flow in a conduit: $\sum_{CS} \rho \underline{V} \cdot \underline{A} = 0 \Rightarrow$

$$\rho_1 V_1 A_1 = \rho_2 V_2 A_2 \quad \Rightarrow \text{if } \rho = \text{constant}, V_1 A_1 = V_2 A_2 \text{ or } Q_1 = Q_2$$

Some useful definitions:

- Mass flux (mass flow rate) $\dot{m} = \int_A \rho \underline{V} \cdot d\underline{A}$ (if ρ = constant , $\dot{m} = \rho Q$)
- Volume flux (flow rate) $Q = \int_A \underline{V} \cdot d\underline{A}$ (if \underline{V} = constant, $Q = \underline{V} \cdot \underline{A}$)
- Average velocity $\overline{V} = Q/A$

3. Newton's Second Law - Momentum Equation

$$\underbrace{\frac{d(\underline{m}\underline{V})}{dt} = \frac{\partial}{\partial t} \int_{CV} \underline{V}\rho d\Psi + \int_{CS} \underline{V}\rho \underline{V} \cdot d\underline{A}}_{= \underline{m}\underline{a}} = \underline{\Sigma}\underline{F}$$

where $\Sigma \underline{F} = \Sigma \underline{F}_B + \Sigma \underline{F}_S$ = vector sum of all external forces acting on *CV* including body forces $\Sigma \underline{F}_B$ (ex: gravity force) and surface forces ΣF_S (ex: pressure force, and shear forces, etc.)

Special cases:

1) Steady flow:
$$\frac{\partial}{\partial t} \int_{CV} \underline{V} \rho d\Psi = 0$$

1) Steady flow: $\frac{1}{\partial t} \int_{CV} \underline{V} \rho d\Psi = 0$ 2) Uniform flow across \underline{A} : $\int_{CS} \underline{V} \rho \underline{V} \cdot d\underline{A} = \sum \underline{V} \rho \underline{V} \cdot d\underline{A}$

Examples:

Flow type	∑ <u>F</u>	$\sum \underline{V} \rho \underline{V} \cdot d\underline{A}$	Continuity Eq. or Bernoulli Eq.
Deflecting vane	$\sum F_x = F_x$ $\sum F_y = F_y$	x-component: $\rho V_1(-V_1A_1)$ $+ \rho(-V_2\cos\theta)(V_2A_2)$ y-component: $\rho(-V_2\sin\theta)(V_2A_2)$	$V_1A_1 = V_2A_2 = Q$
Nozzle Vi PiAi Vi Wis Same	$\sum F_x = R_x + p_1 A_1$ $-p_2 A_2$ $\sum F_y = R_y - W_{\text{Fluiud}}$ $-W_{\text{Nozzle}}$	x-component: $\rho V_1(-V_1A_1)$ $+ \rho V_2(V_2A_2)$ y-component: 0	$A_1V_1 = A_2V_2 = Q$ $p_1 + \frac{\rho V_1^2}{2} = \frac{\rho V_2^2}{2}$ $(\because z_1 = z_1, p_2 = 0)$
Bend FI=PIA, VI VI VI VI VI VI VI VI VI VI	$\sum F_x = R_x + p_1 A_1$ $-p_2 A_2 \cos \theta$ $\sum F_y$ $= R_y + p_2 A_2 \sin \theta$ $-W_{\text{Fluiud}} - W_{\text{Nozzle}}$	x-component: $\rho V_1(-V_1A_1)$ $+ \rho (V_2 \cos \theta) (V_2A_2)$ y-component: $\rho (-V_2 \sin \theta) (V_2A_2)$	$A_1V_1 = A_2V_2 = Q$
Sluice gate	$\sum F_x = F_{GW} + \gamma \frac{y_1}{2} (y_1 b) - \gamma \frac{y_2}{2} (y_2 b)$ $\sum F_y = 0$	x-component: $\rho V_1(-V_1A_1)$ $+ \rho V_2(V_2A_2)$ y-component: 0	$V_{1}(y_{1}b) = V_{2}(y_{2}b)$ = Q $\frac{V_{1}^{2}}{2g} + y_{1}$ $= \frac{V_{2}^{2}}{2g} + y_{2} + h_{L}$ (:: $p_{1} = p_{2} = 0$)

4. First Law of Thermodynamics - Energy Equation

$$\frac{dE}{dt} = \frac{\partial}{\partial t} \int_{CV} e\rho d\Psi + \int_{CS} e\rho \underline{V} \cdot d\underline{A} = \dot{Q} - \dot{W}$$

where,
$$e = \check{u} + e_k + e_p = \check{u} + \frac{V^2}{2} + gz$$
 and $\dot{W} = \dot{W}_s + (\dot{W}_{fp} + \dot{W}_{fs}) = \dot{W}_s + \dot{W}_{fp} = (\dot{W}_t - \dot{W}_p) + \dot{W}_{fp}$

or

$$\dot{Q} - \dot{W}_{s} = \frac{\partial}{\partial t} \int_{CV} \rho \left(\frac{V^{2}}{2} + gz + \breve{u} \right) d\Psi + \int_{CS} \rho \left(\frac{V^{2}}{2} + gz + \breve{u} + \frac{p}{\rho} \right) \underline{V} \cdot d\underline{A}$$

Simplified Form of the Energy Equation (steady, one-dimensional pipe flow):

$$\frac{p_{out}}{\rho} + \frac{V_{out}^2}{2} + gz_{out} = \frac{p_{in}}{\rho} + \frac{V_{in}^2}{2} + gz_{in} + w_s - \text{loss}$$

where $w_s = \dot{W}_s / \dot{m}$, loss $= \check{u}_{out} - \check{u}_{in} - q$, and $q = Q / \dot{m}$.

For non-uniform flows,

$$\underbrace{\frac{p_{in}}{\gamma} + \alpha_{in} \frac{V_{in}^2}{2g} + z_{in} + h_p}_{\text{Mechanical energy}} + \alpha_{out} \frac{V_{out}^2}{2g} + z_{out} + h_t}_{\text{Mechanical energy}} + \underbrace{h_L}_{\text{Thermal energy}}$$

• pump head
$$h_p = \dot{W}_p / \dot{m}g = \dot{W}_p / \rho Qg = \dot{W}_p / \gamma Q$$

- turbine head $h_t = \dot{W}_t / \dot{m}g$
- head loss $h_L = (\hat{u}_2 \hat{u}_1)/g \dot{Q}/\dot{m}g > 0$
- α : kinetic energy correction factor ($\alpha = 1$ for uniform flow across *CS*)
- V in energy equation refers to average velocity \overline{V}

Hydraulic and Energy Grade Lines

- Hydraulic Grade Line: $HGL = \frac{p}{\gamma} + z$
- Energy Grade Line: $EGL = \frac{p}{\gamma} + z + \alpha \frac{V^2}{2g}$

$$EGL_{in} + h_p = EGL_{out} + h_t + h_l$$

Chapter 6 Differential Analysis of Fluid Flow

1. Fluid Element Kinematics

Fluid element motion consists of translation, linear deformation, rotation, and angular deformation.

- Linear deformation(dilatation): $\nabla \cdot \underline{V} \Rightarrow$ if the fluid is incompressible, $\nabla \cdot \underline{V} = 0$
- Rotation(vorticity): $\xi = 2\underline{\omega} = \nabla \times \underline{V} \Rightarrow$ if the fluid is irrotational, $\nabla \times \underline{V} = 0$
- Angular deformation is related to shearing stress: $\tau_{ij} = 2\mu\varepsilon_{ij}$

2. Mass conservation

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \left(\rho \underline{V} \right) = 0$$

For a steady and incompressible flow: $\nabla \cdot \underline{V} = 0$

3. Momentum conservation

$$\rho \underbrace{\left(\frac{\partial V}{\partial t} + \underline{V} \cdot \nabla \underline{V}\right)}_{\underline{a}} = \underbrace{-\rho g \hat{k}}_{\text{body force due to pressure gravity force}} \underbrace{-\nabla p}_{\text{pressure force}} + \underbrace{\nabla \cdot \tau_{ij}}_{\text{viscous shear force}}$$

For Newtonian incompressible fluid the shear stress is proportional to the rate of strain, $\nabla \cdot \tau_{ij} = \mu \nabla^2 \underline{V}$.

4. Navier-Stokes Equations

1) Cartesian coordinates

Continuity:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$$

Momentum:

$$\rho \left[\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} \right] = -\frac{\partial p}{\partial x} + \rho g_x + \mu \left[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right]$$
$$\rho \left[\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} \right] = -\frac{\partial p}{\partial y} + \rho g_y + \mu \left[\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right]$$
$$\rho \left[\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} \right] = -\frac{\partial p}{\partial z} + \rho g_z + \mu \left[\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2} \right]$$

2) Cylindrical coordinates:

Continuity:

$$\frac{1}{r}\frac{\partial(rv_r)}{\partial r} + \frac{1}{r}\frac{\partial v_{\theta}}{\partial \theta} + \frac{\partial v_z}{\partial z} = 0$$

Momentum:

$$\rho\left(\frac{\partial v_r}{\partial t} + v_r\frac{\partial v_r}{\partial r} + \frac{v_\theta}{r}\frac{\partial v_r}{\partial \theta} - \frac{v_\theta^2}{r} + v_z\frac{\partial v_r}{\partial z}\right) = -\frac{\partial p}{\partial r} + \rho g_r + \mu \left[\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial v_r}{\partial r}\right) - \frac{v_r}{r^2} + \frac{1}{r^2}\frac{\partial^2 v_r}{\partial \theta^2} - \frac{2}{r^2}\frac{\partial v_\theta}{\partial \theta} + \frac{\partial^2 v_r}{\partial z^2}\right]$$

$$\rho\left(\frac{\partial v_\theta}{\partial t} + v_r\frac{\partial v_\theta}{\partial r} + \frac{v_\theta}{r}\frac{\partial v_\theta}{\partial \theta} + \frac{v_r v_\theta}{r} + v_z\frac{\partial v_\theta}{\partial z}\right) = -\frac{\partial p}{\partial \theta} + \rho g_\theta + \mu \left[\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial v_\theta}{\partial r}\right) - \frac{v_\theta}{r^2} + \frac{1}{r^2}\frac{\partial^2 v_\theta}{\partial \theta^2} + \frac{2}{r^2}\frac{\partial v_r}{\partial \theta} + \frac{\partial^2 v_\theta}{\partial z^2}\right]$$

$$\rho\left(\frac{\partial v_z}{\partial t} + v_r\frac{\partial z}{\partial r} + \frac{v_\theta}{r}\frac{\partial v_z}{\partial \theta} + v_z\frac{\partial v_z}{\partial z}\right) = -\frac{\partial p}{\partial z} + \rho g_z + \mu \left[\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial v_z}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 v_z}{\partial \theta^2} + \frac{\partial^2 v_z}{\partial z^2}\right]$$

4. Exact solutions of NS Equations

Ex 1) Couette Flow (without pressure gradient)

Assumptions: laminar, steady, 2-D, incompressible, ignore gravity, no pressure gradient

• Continuity:
$$\frac{\partial u}{\partial x} = 0$$

• Momentum:
$$0 = \frac{\mu \partial^2 u}{\partial y^2}$$

• B.C.:
$$u(h) = U, u(0) = 0$$

$$\Rightarrow u(y) = \frac{U}{h}y$$

Shear stress at the bottom wall: $\tau_w = \mu \frac{du}{dy}\Big|_{y=0} = \frac{\mu U}{b}$

Ex 2) Circular pipe (with constant pressure gradient)

Assumptions: laminar, steady, incompressible, fully-developed, constant pressure gradient

- Continuity: $\frac{1}{r} \frac{\partial(rv_r)}{\partial r} = 0$
- z-Momentum: $0 = -\frac{\partial p}{\partial z} + \mu \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial v_z}{\partial r} \right) \right]$ B.C.: $v_r(r=0) = 0, v_z(r=0) \neq \infty,$ $v_r(r=R) = 0$ $v_{z}(r=R)=0$

$$v_{z}(r = R) = 0$$

$$\Rightarrow v_{z}(r) = \frac{1}{4\mu} \left(\frac{\partial p}{\partial z}\right) (r^{2} - R^{2})$$
(a)

1) Flow rate: $Q = \int_0^R v_z dA = -\frac{\pi R^4}{8\mu} \left(\frac{\partial p}{\partial z}\right) = \frac{\pi R^4 \Delta p}{8\mu\ell} \quad \because \quad -\frac{\partial p}{\partial z} = \frac{\Delta p}{\ell}$

2) Mean velocity:
$$\overline{V} = \frac{Q}{A} = \frac{R^2 \Delta p}{8\mu\ell}$$

3) Maximum velocity:
$$V_{max} = v_z(0) = \frac{R^2 \Delta p}{4\mu \ell} = 2\bar{V}$$

Chapter 7 Dimensional Analysis and Modeling

1. Buckingham Pi Theorem

For any physically meaningful equation involving k variables, such as

$$u_1 = f(u_2, u_3, \cdots, u_k)$$

with minimum number of reference dimensions r, the equation can be rearranged into product of k - r pi terms.

$$\Pi_1 = \phi(\Pi_2, \Pi_3, \cdots, \Pi_{k-r})$$

Example – Exponent method:

$$\Delta p_{\ell} = f(D, \rho, \mu, V)$$

where, $\Delta p_{ell} \doteq FL^{-3}$; $D \doteq L$; $\rho \doteq FL^{-4}T^2$; $\mu \doteq FL^{-2}T$; $V \doteq LT^{-1}$. Then, the number of pi terms = k - r = 5 - 3 = 2.

$$\Pi_1 = \Delta p_\ell D^a V^b \rho^c$$

It follows that

$$(FL^{-3})(L)^{a}(LT^{-1})^{b}(FL^{-4}T^{2})^{c} = F^{0}L^{0}T^{0}$$

1 + c = 0	(for F)
-3 + a + b - 4c = 0	(for <i>L</i>)
-b + 2c = 0	(for <i>T</i>)

so that a = 1, b = -2, c = -1, and therefore

$$\Pi_1 = \frac{\Delta p_\ell D}{\rho V^2}$$

$$\Pi_2 = \mu D^a V^b \rho^c$$

It follows that

$$(FL^{-2}T)(L)^a(LT^{-1})^b(FL^{-4}T^2)^c = F^0L^0T^0$$

Similarly for Π_1 ,

$$\Pi_2 = \frac{\mu}{DV\rho}$$

Then,

$$\frac{\Delta p_\ell D}{\rho V^2} = f\left(\frac{\mu}{DV\rho}\right)$$

Variable	velocity	density	gravity	viscosity	Surface tension	compres sibility	Pressure change	Length
Symbol	V	ρ	g	μ	σ	K	Δp	L
Unit (SI)	m/s	kg/m ³	m/s ²	$N \cdot s/m^2$	N/m	N/m ²	N/m ²	m
MLT	LT^{-1}	ML^{-3}	LT^{-2}	$ML^{-1}T^{-1}$	MT^{-2}	$ML^{-1}T^{-2}$	$ML^{-1}T^{-2}$	L
FLT	LT^{-1}	FT^2L^{-4}	LT^{-2}	FTL^{-2}	FL^{-1}	FL^{-2}	FL^{-2}	L

2. Common Dimensionless Parameters for Fluid Flow Problems.

Dimensionless Groups	Symbol	Definition	Interpretation
Reynolds number	Re	$rac{ ho VL}{\mu}$	$\frac{\text{inertia force}}{\text{viscous force}} = \frac{\rho V^2 / L}{\mu V / L^2}$
Froude number	Fr	$rac{V}{\sqrt{gL}}$	$\frac{\text{inertia force}}{\text{gravity force}} = \frac{\rho V^2 / L}{\gamma}$
Weber number	We	$\frac{\rho V^2 L}{\sigma}$	$\frac{\text{inertia force}}{\text{surface tension force}} = \frac{\rho V^2 / L}{\sigma / L^2}$
Mach number	Ма	$\frac{V}{\sqrt{K/\rho}} = \frac{V}{a}$	indertia force compressibility force
Euler number	Cp	$rac{\Delta p}{ ho V^2}$	$\frac{\text{pressure force}}{\text{inertia force}} = \frac{\Delta p/L}{\rho V^2/L}$

3. Similarity and Model Testing

If all relevant dimensionless parameters have the same corresponding values for model and prototype, flow conditions for a model test are completely similar to those for prototype.

$$\Pi_{\text{model}} = \Pi_{\text{prototype}}$$

Model Testing

1) Fr similarity $Fr_m = Fr_p$

$$rac{V_m}{\sqrt{gL_m}}=rac{V_p}{\sqrt{gL_p}}$$
 \Rightarrow $V_m=\sqrt{\alpha}V_p$ Froude scaling, where $lpha=L_m/L_p$

2) Re similarity $\operatorname{Re}_m = \operatorname{Re}_p$

$$\frac{V_m L_m}{v_m} = \frac{V_p L_p}{v_p} \Rightarrow \frac{v_m}{v_p} = \frac{V_m L_m}{V_p L_p} = \alpha^{\frac{3}{2}}$$