Information and assumptions

Provided in problem statement

Find

Deflection of manometer

Solution

.....

$$V_1 A_1 = V_2 A_2$$
 (Eqn. = 2)
 $V_2 = V_1 (A_1 / A_2)$
 $= 100 \times (2)$
 $= 200 \text{ ft/s}$ (Inter. + Ans. = 1)

Bernoulli equation from 1 to 2

$$p_{1} + \rho V_{1}^{2}/2 = p_{2} + \rho V_{2}^{2}/2$$

$$p_{1} - p_{2} = (1/2) \rho (V_{2}^{2} - V_{1}^{2})$$

$$= (1/2)(0.0644/32.2)(200^{2} - 100^{2})$$

$$= 30 psf$$
(Eqn. = 4)
(Eqn. = 4)
(Inter. + Ans. = 1)

Manometer equation for deflection

$$p_{1} - p_{2} = \Delta h \left(\gamma_{liquid} - \gamma_{air} \right)$$

$$30 = \Delta h \left(120 - 0.0644 \right)$$

$$\Delta h = 0.25 ft$$
(Eqn. = 1)
(Inter. + Ans. = 1)

Information and assumptions

Provided in problem statement

Find

Vertical component of force exerted by anchor on bend

Solution

$$v = Q/A$$

$$= 31.4/(\pi \times 1 \times 1)$$

$$= 9.995 ft/s$$
(Eqn. = 3)
(Inter. + Ans. = 1)

Y-momentum

$$\sum F_{y} = \rho Q \left(v_{2y} - v_{1y} \right)$$

$$F_{a} - W_{water} - W_{bend} - p_{2} A_{2} \sin 30^{\circ} = \rho Q \left(v \sin 30^{\circ} - v \sin 0^{\circ} \right)$$

$$F_{a} = \left(\pi \times 1 \times 1 \times 4 \times 62.4 \right) + \left(300 \right) + 8.5 \times 144 \times \pi \times 1 \times 1 \times 0.5$$

$$+ \left[1.94 \times 31.4 \times \left(9.995 \times 0.5 - 0 \right) \right]$$

$$F_{a} = 3,310 lbf$$
(Inter. + Ans. = 1)

Information and assumptions

Provided in problem statement

Find

Power supplied to water pump

Solution

Velocity calculation

$$V = Q/A$$

$$= 3.0/((\pi/4) \times (2/3)^{2})$$

$$= 8.59 ft/s$$
(Eqn. = 1)
(Inter. + Ans. = 1)

Loss calculation

$$h_{L} = 0.015 \times (3000/(2/3)) \times (8.59)^{2} / (2 \times 32.2)$$

$$+ (8.59)^{2} / (2 \times 32.2)$$

$$= 78.5 ft$$
(Inter. + Ans. = 1)

Energy equation from water surface to water surface

$$p_{1}/\gamma_{1} + V_{1}^{2}/2 g + z_{1} + h_{p} = p_{2}/\gamma_{2} + V_{2}^{2}/2 g + z_{2} + h_{L}$$
 (Eqn. = 3)

$$0 + 0 + 90 + h_{p} = 0 + 0 + 140 + 78.5$$

$$h_{p} = 128.5 ft$$
 (Inter. + Ans. = 1)

Power supplied to water pump

$$P = Q\gamma h_p$$

= 3.0×62.4×128.5
= 24,055 ft-lbf/s
 $P = 24,055/550 = 43.7hp$ (Eqn.+ Ans. = 1)

Information and assumptions

Provided in problem statement

Find

The π -groups

Solution

Using the step-by-step method: n-m=5-3=2 π -groups

$$\begin{vmatrix} n & \frac{1}{T} \\ V & \frac{L}{T} & (+1) \\ d & L & (+1) \\ \rho & \frac{M}{L^3} & (+1) \\ \mu & \frac{M}{LT} & \mu d & \frac{M}{T} & (+1) \\ \mu & \frac{M}{L} & \mu d & \frac{M}{T} & (+1) \\ \end{vmatrix} \begin{vmatrix} n & \frac{1}{T} \\ \frac{V}{d} & \frac{1}{T} \\ \frac{V}{d} & \frac{1}{T} & (+1) \\ \frac{\mu}{\rho d^2} & \frac{1}{T} & (+1) \\ \frac{\mu}{\rho V d} & 0 & (+1) \end{vmatrix}$$

There are other possible solutions.

The final functional form is

$$\frac{nd}{V} = f\left(\frac{\mu}{Vd\rho}\right)$$
