Chapter 1 INTRODUCTION AND BASIC CONCEPTS

1. Fluids and no-slip condition

- Fluid: a substance that deforms continuously when subjected to shear stresses
- No-slip condition: no relative motion between fluid and boundary

2. Basic units

3. Weight and mass

- W° (N) = $m(Kg) \cdot g$, where $g = 9.81$ m/s²
- \mathcal{W}° (lbf) = m (slug) \cdot g, where g = 32.2 ft/s²
- $1 N = 1 Kg \times 1 m/s^2$
- 1 lbf = 1 slug \times 1 ft/s²
- 1 slug = 32.2 lbm (weighs 32.2 lb under standard gravity)

4. Properties involving mass or weight of fluid

- Specific weight $\gamma = \rho g$ (N/m³)
- Specific gravity $SG = \gamma / \gamma_{water}$

5. Viscosity

- Newtonian fluid: $\tau = \mu \frac{d}{d\tau}$ d
	- \circ τ Shear stress (N/m²; lb/ft²)
	- \circ μ Coefficient of viscosity (Ns/m²; lb·s/ft²)
	- $\circ \quad v = \mu / \rho$ Kinematic viscosity (m²/s; ft²/s)
- Non-Newtonian fluid: $\tau \propto \left(\frac{du}{dy}\right)^n$

Ex) Couette flow

$$
u(y) = \frac{v}{h}y, \tau = \mu \frac{du}{dy} = \mu \frac{v}{h}
$$

6. Vapor pressure and cavitation

- When the pressure of a liquid falls below the vapor pressure p_v it evaporates, i.e., changes to a gas.
- If the pressure drop is due to fluid velocity, the process is called cavitation.
- Cavitation number

$$
C_a = \frac{p - p_v}{1/2 \rho V_{\infty}^2}
$$

• $C_a < 0$ implies cavitation

7. Surface tension

• Surface tension force

$$
F_{\sigma} = \sigma \cdot L
$$

- \bullet F_{σ} = line force with direction normal to the cut
- \bullet σ = surface tension [N/m]
- \bullet L = length of cut through the interface

Chapter 2 PRESSURE AND FLUID STATICS

1. Absolute pressure, Gage pressure, and Vacuum

- $p_A > p_a$, $p_g = p_A p_a$ = gage pressure
- $p_A < p_a$, $p_{vac} = -p_g = p_a p_A$ = vacuum pressure

2. Pressure variation with elevation

- For a static fluid, pressure varies only with elevation z and is constant in horizontal x , y planes. ∂ ∂ ∂ ∂ д ∂
- If the density of fluid is constant,
	- $p + \gamma z$ = constant (piezometric pressure)
	- \circ $\frac{p}{p}$ $\frac{p}{\gamma}$ + z = constant (piezometric head)
	- $p_{z=0} = 0$ gage, $p = -\gamma z$: increase linearly with depth, decrease linearly with height

3. Pressure measurements (Manometry)

1) U-tube manometer

- $p_1 + \gamma_m \Delta h \gamma \ell = p_4$ $p_1 = p_{atm}$
- $p_4 = \gamma_m \Delta h \gamma \ell$ gage $= \gamma_{water}(S G_m \Delta h - S G \ell)$

2) Differential U-tube manometer

- $p_1 + \gamma_f \ell_1 \gamma_m \Delta h \gamma_f (\ell_2 \Delta h) =$
- $p_1 p_2 = \gamma_f(\ell_2 \ell_1) + (\gamma_m \gamma_f)\Delta$
- $(p_1/\gamma_f + \ell_1) (p_2/\gamma_f + \ell_2)$ d $=(\gamma_m/\gamma_f-1)\Delta$
	- o If fluid is a gas $\gamma_f \ll \gamma_m : p_1 p_2 = \gamma_m \Delta h$
	- o If fluid is liquid & pipe horizontal $\ell_1 = \ell_2$:

$$
p_1-p_2=(\gamma_m-\gamma_f)\Delta h
$$

4. Hydrostatic forces on plane surfaces

1) Horizontal surfaces

- $F = pA$
- Line of action is through centroid of A, i.e., $(x_{cp}, y_{cp}) = (\bar{x}, \bar{y})$

2) Inclined surfaces

- $F = \bar{p}A$
	- $\overline{p} = \gamma \sin \alpha \overline{y}$: pressure at centeroid of A
	- $\overline{y} = \frac{1}{4}$ $\frac{1}{A}\int y dA$: 1st moment of area
- Magnitude of resultant hydrostatic force on plane surface is product of pressure at centeroid of area and area of surface
- Center of pressure

$$
\begin{aligned}\n &\text{o} \quad y_{cp} = \bar{y} + \frac{\bar{I}}{\bar{y}A} \\
&\text{o} \quad x_{cp} = \frac{\bar{I}_{xy}}{\bar{y}A} + \bar{x}\n \end{aligned}
$$

 \bar{I} : moment of inertia with respect to horizontal centeroidal axis For plane surfaces with symmetry about an axis normal to 0-0, $\bar{I}_{xy} = 0$ and $x_{cp} = \bar{x}$

5. Hydrostatic forces on curved surfaces

- $F_x = -\int_{A_x} p dA_x$ ($dA_x = \underline{n} \cdot \hat{i}A$: projection of $\underline{n}dA$ onto plane ⊥ to x-direction)
- $F_y = -\int_{A_y} p dA_y$ ($dA_y = \underline{n} \cdot \hat{j}A$: projection of $\underline{n}dA$ onto plane ⊥ to y-direction)
- $F_z = -\int_{A_z} p dA_z = \gamma \Psi$ = weight of fluid above surface

6. Buoyancy

- $F_B = F_{V2} F_{V1} = \rho g \Psi$
- Fluid weight equivalent to body volume Ψ
- \bullet Line of action is through centeroid of Ψ = center of buoyancy

7. Stability

1) Immersed bodies

- Static equilibrium requires: $\sum F_{\nu} = 0$ and $\sum M = 0$.
- $\sum M = 0$ requires $C = G$ and the body is neutrally stable
- If C is above G: stable (righting moment when heeled)
- If G is above C: unstable (heeling moment when heeled)

2) Floating bodies

- The center of buoyancy generally shifts when the body is rotated
- Metacenter M: The point of intersection of the lines of action of the buoyant force before and after heel

- $GM = \frac{I}{I}$ $\frac{00}{V}$
	- o GM: metacentric height
	- \circ I_{oo} = moment of inertia of waterplane area about centerplane axis
- GM > 0: stable (M is above G)
- GM < 0: unstable (G is above M)

8. Fluids in rigid-body motion

• If no relative motion between fluid particles

$$
\nabla p = \rho \left(\underline{g} - \underline{a} \right)
$$

• For rigid body translation: $\underline{a} = a_x \hat{i} + a_z \hat{k}$

$$
\nabla p = -\rho \left[a_x \hat{\imath} + (g + a_z) \hat{k} \right]
$$

\n•
$$
\frac{\partial p}{\partial x} = -\rho a_x
$$

\n•
$$
\frac{\partial p}{\partial z} = -\rho (g + a_z)
$$

- $\rho = \rho Gs + constant \Rightarrow p_{gage} = \rho Gs$
	- $G = [a_x^2 + (g + a_z)^2]^{\frac{1}{2}}$ $\overline{\mathbf{c}}$ $\theta = \tan^{-1} \frac{g}{g}$
	- \hat{s} = unit vector in direction normal of ∇p
- For rigid body rotation: $\underline{a} = -r\Omega^2 \hat{e}_r$

\n- ∇
$$
p = -\rho g \hat{k} + \rho r \Omega^2 \hat{e}_r
$$
\n- $\frac{\partial p}{\partial r} = \rho r \Omega^2$ $\frac{\partial p}{\partial z} = -\rho g$ $\frac{\partial p}{\partial \theta} = 0$
\n- ∇ $p = \frac{\rho}{2} r^2 \Omega^2 - \rho g z + \text{constant or } \frac{p}{\gamma} + z - \frac{V^2}{2g} = \text{constant } (V = r \Omega)$
\n- ∇ $z = \frac{p_0 - p}{\rho g} + \frac{r^2 \Omega^2}{2g} = a + br^2$: curves of constant pressure $(p_0 : \text{pressure at } (r, z) = (0, 0)$
\n

Chapter 3 BERNOULLI EQUATION

1. Flow patterns

- Stream line: a line that is everywhere tangent to the velocity vector at a given instant
- Pathline: the actual path traveled by a given fluid particle
- Streakline: the locus of particles which have earlier passed through a particular point

2. Streamline coordinates

- Velocity : $V(x, t) = v_s(x, t) \hat{s}$
- Acceleration:

$$
\underline{a} = \left(\frac{\partial v_s}{\partial t} + v_s \frac{\partial v_s}{\partial s}\right) \hat{\mathbf{s}} + \left(\frac{\partial v_n}{\partial t} + \frac{v_s^2}{\mathfrak{R}}\right) \hat{\mathbf{n}}
$$

- \circ $\frac{\partial v_s}{\partial t}$ = local a_s in \hat{s} direction
- \circ $\frac{\partial v_n}{\partial t}$ = local a_n in \hat{n} direction
- \circ $v_s \frac{\partial v_s}{\partial s}$ = convective a_s due to spatial gradient of
- \int_0^2 $\frac{\sqrt{s}}{\Re}$ = convective a_n due to curvature ψ : centrifugal acceleration
- \circ \mathcal{R} : the radius of curvature of the streamline

3. Bernoulli equation

- Euler equation: $\rho a = -\nabla (p + \gamma z)$
- Along streamline

$$
p+\frac{1}{2}\rho v_s^2+\gamma z=constant
$$

or

$$
\frac{p}{\gamma} + \frac{v_s^2}{2g} + z = constant
$$

Across streamline

$$
p + \rho \int \frac{v_s^2}{\Re} dn + \gamma z = constant
$$

- Assumptions
	- o Inviscid flow
	- o Steady flow
	- o Incompressible flow
	- o Flow along a streamline

4. Applications of Bernoulli equation

1) Stagnation tube

•
$$
p_1 + \rho \frac{v_1^2}{2} = p_2 + \rho \frac{v_2^2}{2}
$$

 $z_1 = z_2, p_1 = \gamma d, V_2 = 0, p_2 = \gamma (l + d)$

•
$$
V_1 = \sqrt{\frac{2}{\rho}(p_2 - p_1)} = \sqrt{\frac{2}{\rho}\gamma l} = \sqrt{2gl}
$$

2) Pitot tube

•
$$
\frac{p_1}{\gamma} + \frac{V_1^2}{2g} + z_1 = \frac{p_2}{\gamma} + \frac{V_2^2}{2g} + z_2
$$

\n• $V_2 = \sqrt{2g \left\{ \frac{p_1}{\gamma} + z_1 \right\} - \frac{p_2}{\gamma} + z_2 \right\}}$
\n• $h = \text{piezometric head}$

•
$$
V = V_2 = \sqrt{2g(h_1 - h_2)}
$$

 $h_1 - h_2$ from manometer or pressure gauge

3) Simplified continuity equation

- Volume flow rate: $Q = VA$
- Mass flow rate: $\dot{m} = \rho Q = \rho V A$
- Conservation of mass: $\rho_1 V_1 A_1 = \rho_2 V_2 A_2$
- For incompressible flow (ρ =constant): $V_1 A_1 = V_2 A_2$ or $Q_1 = Q_2$

4) Flow rate measurement

- **If the flow is horizontal (** $z_1 = z_2$), steady, inviscid, and incompressible, $p_1 + \frac{1}{2}$ $\frac{1}{2}\rho V_1^2 = p_2 + \frac{1}{2}$ $\frac{1}{2}\rho V_2^2$
- If velocity profiles are uniform at sections (1) and (2), $Q = V_1 A_1 = V_2 A_2$

• Flow rate is,
$$
Q = A_2 \sqrt{\frac{2(p_1 - p_2)}{\rho [1 - (A_2/A_1)^2]}}
$$

Ex) Venturi meter

Chapter 4 FLUIDS KINEMATICS

1. Velocity and description Methods

Lagrangian: keep track of individual fluids particles

$$
\underline{V_p} = u_p \hat{\imath} + v_p \hat{\jmath} + w_p \hat{k}
$$

Eulerian: focus attention on a fixed point in space

$$
\underline{V} = \underline{V}(\underline{x}, t) = u\hat{\imath} + v\hat{\jmath} + w\hat{k}
$$

2. Acceleration and material derivatives

Lagrangian:

$$
\frac{a_p}{dt} = \frac{dV_p}{dt} = a_x \hat{i} + a_y \hat{j} + a_z \hat{k}
$$

$$
a_x = \frac{du_p}{dt} \quad a_y = \frac{dv_p}{dt} \quad a_z = \frac{dw_p}{dt}
$$

Eulerian:

$$
\underline{a} = \frac{DV}{Dt} = \frac{\partial V}{\partial t} + (\underline{V} \cdot \nabla)\underline{V} = a_x \hat{\imath} + a_y \hat{\jmath} + a_z \hat{k}
$$

where,

$$
\nabla = \frac{\partial}{\partial x}\hat{i} + \frac{\partial}{\partial y}\hat{j} + \frac{\partial}{\partial z}\hat{k} : \text{ gradient operator}
$$

$$
a_x = \frac{Du}{Dt} = \frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} + w\frac{\partial u}{\partial z}
$$

$$
a_y = \frac{Dv}{Dt} = \frac{\partial v}{\partial t} + u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} + w\frac{\partial v}{\partial z}
$$

$$
a_z = \frac{Dw}{Dt} = \frac{\partial w}{\partial t} + u\frac{\partial w}{\partial x} + v\frac{\partial w}{\partial y} + w\frac{\partial w}{\partial z}
$$

- \bullet $\frac{\partial y}{\partial t}$ = local or temporal acceleration. Velocity changes with respect to time at a given point.
- \bullet $(\underline{V}\cdot\nabla)\underline{V}$ = convective acceleration. Spatial gradients of velocity
- Material (substantial) derivative

$$
\frac{D}{Dt} = \frac{\partial}{\partial t} + u\frac{\partial}{\partial x} + v\frac{\partial}{\partial y} + w\frac{\partial}{\partial z}
$$

3. Flow classification

- One-, Two-, and Three-dimensional flow
- Steady vs. Unsteady flow
- Incompressible and Compressible flow
- Viscous and Inciscid flow
- Rotational vs. Irrotational flow
- Laminar vs. Trubulent viscous flow
- Internal vs. External flow
- Separated vs. Unseparated flow

4. Reynolds Transport Theorem (RTT)

$$
\frac{dB_{sys}}{dt} = \frac{\partial}{\partial t} \int_{CV} \beta \rho dV + \int_{CS} \beta \rho \underline{V_R} \cdot \underline{n} dA
$$

Special Cases:

- Non-deforming CV moving at constant velocity: $\frac{dB_{sys}}{dt} = \int_{CV} \frac{\partial}{\partial t}$ $\frac{\partial}{\partial t} (\beta \rho) dV + \int_{CS} \beta$
- Fixed CV: $\frac{dB_{sys}}{dt} = \int_{CV} \left[\frac{\partial}{\partial t} \right]$ $\frac{\partial}{\partial t}(\beta \rho) + \nabla \cdot (\beta \rho \underline{V}) d$
- Steady flow: $\frac{b}{\partial}$
- Uniform flow across discrete CS (steady or unsteady):

 $\int_{CS}\beta\rho\underline{V}\cdot \underline{n}dA=\sum_{CS}\beta\rho\underline{V}\cdot \underline{n}dA_{(-inlet,+outlet)}$

5. Continuity equation

$$
\frac{dM}{dt} = 0 = \frac{\partial}{\partial t} \int_{CV} \rho dV + \int_{CS} \rho \underline{V_R} \cdot \underline{n} dA
$$

Simplifications:

- Steady flow: $-\frac{\partial}{\partial t}\int_{CV}\rho$
- \cdot $V =$ constant over discrete dA (flow sections): $\int_{CS} \rho V \cdot \frac{n}{dA} = \sum_{CS} \rho V \cdot \frac{n}{dA}$
- Incompressible fluid (ρ = constant): $\int_{CS}\rho\underline{V}\cdot\underline{A}=-\frac{\partial}{\partial t}\int_{CV}dV$ (conservation of volume)
- Steady One-dimensional flow in a conduit: $\sum_{CS} \rho \underline{V} \cdot \underline{A} = 0$, $-\rho_1 V_1 A_1 + \rho_2 V_2 A_2 = 0$, for $\rho =$ const $Q_1 = Q_2$