Class #
or Lab #
|
Date
|
Important Concepts
(Section # in Text Reading and Example)
or Lab Activities
|
Problems Assigned,
due next class: by 5:00 pm
|
1
|
Aug 24
|
Definition fluid; continuum hypothesis; fluid properties
(Text 1.1 - 1.5)
Example:
Ideal gas equation (1.39)
|
1.28 (g,r,SG)
1.42 (ideal gas)
|
2
|
26
|
Viscosity, shear stress and rate of strain;
compressibility; vapor pressure/cavitation;
surface tension and capillary effects; flow
classification
(Text 1.6-1.11)
Example:
Shear stress (1.65)
|
1.64 (t)
1.77 (Ev)
|
3, L1
|
28
|
Fluid Mechanics: AFD,
EFD, and CFD
|
1.90 (pv)
1.100 (s)
|
4
|
31
|
Pressure definition, force, and transmission;
absolute/gage/vacuum;
pressure variation with elevation liquids/gases;
pressure measurement (barometer, piezometer,
manometers)
(Text 2.1-2.7)
Example:
Effects of surface tension
|
2.9
(pressure variation)
2.16
(gases; standard atmosphere)
|
5, L2
|
Sep 2
|
Experimental Methodology and
Uncertainty Assessment Procedures: EFD Pre-test
|
|
6
|
4
|
Hydrostatic forces on plane surfaces
(Text 2.8-2.9)
Example:
Manometer (2.40)
Concepts of EFD Lab 1
|
2.31 (u-tube manometer)
2.41 (differential
manometer)
|
|
7
|
Labor
Day: No Class
|
|
L3
|
8
|
EFD Lab1 (1)
|
|
7
|
9
|
Continued
Example:
Plane surface (2.66)
|
2.61, 2.68 (plane surface)
|
L3
|
10
|
EFD Lab1 (2)
|
|
8
|
11
|
Hydrostatic forces curved surfaces (horizontal and
vertical components); buoyancy; hydrometer
(Text 2.10-2.11)
Example1:
Plane surface (2.67)
Example2:
Curved surface (1)
Example3:
Curved surface (2) (2.89)
|
2.92, 2.95 (curved surface)
|
9
|
14
|
Stability immersed and floating bodies; rigid body
translation and rotation
(Text 2.12-2.13)
Example:
Buoyancy (2.97)
|
2.98 (buoyancy)
2.105 (hydrometer)
|
L3
|
15
|
EFD Lab1 (3)
|
|
10
|
16
|
Continued
Example1:
Stability
Example2: Translation (1)
Example3:
Translation (2)
Example4: Rotation (1)
Example5:
Rotation (2)
|
SP.1, SP.2 (stability)
|
L3
|
17
|
EFD Lab1 (4)
|
|
11
|
18
|
Continued
Example:
Translation (2.114)
|
2.111 (translation)
2.117 (rotation)
|
12
|
21
|
Newton's 2nd Law for a Fluid, Steamline Coordinates, Bernoulli equation
(Text 3.1-3.4)
Example1:
Bernoulli equation (along streamline) (3.3)
Example2: Bernoulli equation (normal
to streamline) (3.16)
|
3.4 (along streamline)
3.13
(normal to streamline)
|
L4
|
22
|
EFD Lab2 (1)
|
|
13
|
23
|
Static Dynamic and total pressure, applications
Bernoulli equation, Flow Rate
(Text 3.5-3.6)
Example1:
Bernoulli equation (Q) (3.53)
Example2: Bernoulli equation (along
streamline)
Concepts of
EFD Lab 2 & CFD Lab 1
|
3.49 (Bernoulli equation, Q)
3.51 (Bernoulli equation, static and total
pressure)
|
L4
|
24
|
EFD Lab2 (2)
|
|
14
|
25
|
Limitations Bernoulli equation
(Text 3.7-3.9)
Example1:
Bernoulli equation (Sluice gate) (3.112)
Example2: Bernoulli equation (along
streamline)
Fluid kinematics, velocity, acceleration
(Text 4.1 - 4.2)
|
3.75 (Bernoulli equation, cavitation)
3.101 (Bernoulli
equation, channel flow)
|
15
|
28
|
Continued, fluid kinematics, velocity,
acceleration
Example:
Velocity (4.8)
|
4.5, 4.37 (velocity)
|
L4
|
29
|
EFD Lab2 (3)
|
|
16
|
30
|
Flow classification
Example1:
Acceleration (1) (4.36)
Example2: Acceleration (2)
|
4.24, 4.33 (acceleration)
|
L4
|
Oct 1
|
EFD Lab2 (4)
|
|
17
|
2
|
Review 1
|
|
18
|
5
|
EXAM 1
|
|
19, L5
|
7
|
Introduction to Computational Fluid
Dynamics: CFD Pre-test
|
|
20
|
9
|
Control volume approach and RTT
(Text 4.3-4.5)
Example1:
RTT (4.71)
Example2:
RTT (4.72)
Control Volume Analysis, continuity equation
(Text 5.1)
Example:
Continuity (5.12)
|
5.9, 5.17
(control volume)
|
21
|
12
|
Continued, continuity equation
Example1:
Steady flow continuity (5.18)
Example2:
Unsteady flow continuity (5.30)
Example3: Falling cylinder
|
5.19, 5.25
(continuity)
|
L6
|
13
|
CFD
PreLab1 (1)
|
|
22
|
14
|
Momentum Equation
(Text 5.2)
Example1:
Momentum, bend (5.40)
Example2: Momentum, nozzle (5.66)
|
5.45 (momentum, bend)
5.46 (momentum, nozzle)
|
L6
|
15
|
CFD PreLab1 (2)
|
|
23
|
16
|
Continued
Example1:
Bend (5.67)
Example2:
Vane (e5 5.62)
Example3:
Jet (5.57)
|
5.41 (nozzle)
5.64,
5.65
(vane)
|
24
|
19
|
Energy
equation
(Text
5.3-5.5)
Example1:
Head loss (5.95)
Example2: Moving vane
|
5.96
(head loss)
5.100 (head
loss)
|
L7
|
20
|
CFD Lab1 (1)
|
|
25
|
21
|
Concept of Hydraulic and Energy
Grade Lines
Example1: Energy, pump (5.109)
Example2: Energy, turbine (5.108)
|
5.113
(energy, turbine)
5.111 (energy, pump)
|
L7
|
22
|
CFD Lab1 (2)
|
|
26
|
23
|
Application of the Energy,
Momentum, and
Continuity Equations in Combination
Example1: Bend (5.128)
Example2: Sluice gate
|
SP-1 (energy
+ momentum)
SP-2
(energy + momentum)
|
27
|
26
|
Differential
Analysis, relative motion, vorticity, continuity, and stream function
(Text
6.1-6.2)
Example1: Fluid kinematics and vorticity (6.4)
Example2: Continuity (6.23)
|
6.7
(vorticity)
6.13
(continuity)
|
L8
|
27
|
EFD Lab3 (1)
|
|
28
|
28
|
Momentum equation and
differential analysis of fluid flow
(Text 6.3, 6.8-6.11)
Example1: Cotinuity
(6.24)
Example2: Exact solutions of NS (Couette
flow) (6.93)
Concepts of EFD Lab 3 & CFD Lab 2
|
6.89 (Couette flow)
6.85
(Flow between fixed plates)
|
L8
|
29
|
EFD Lab3 (2)
|
|
29
|
30
|
Continued
Example1: Exact solutions of NS (Rotating cylinder) (6.102)
Example2: Exact solutions of NS (Poiseuille
flow) (6.86)
|
6.100 (Poiseuille flow)
6.104
(pipe flow)
|
30
|
Nov 2
|
Dimensional
homogeneity; dimensional analysis; Pi theorem; Important
non-dimensional parameters
(Text
7.1-7.7)
Example1: Pi parameters (7.18)
Example2: Pi parameters (7.22)
|
7.16,
7.23 (Pi parameters)
|
L8
|
3
|
EFD Lab3 (3)
|
|
31
|
4
|
Similarity and model testing
(Text 7.8-7.11)
Example1: Re similarity (1) (7.56)
Example2: Fr similarity (1) (7.55)
Example3: Re similarity (2)
Example4: Fr similarity (2)
EFD Lab3 concepts: drag calculation
|
7.43 (Re similarity)
7.75 (Fr similarity)
|
L8
|
5
|
EFD Lab3 (4)
|
|
32
|
6
|
Review 2
|
|
33
|
9
|
EXAM 2
|
|
L9
|
10
|
CFD PreLab2 (1)
|
|
34
|
11
|
Viscous Flow in Pipes, entrance
and developing flow, laminar flow, friction factor
(Text 8.1-8.2)
Example1: 8.17
Example2: 8.19
|
8.22, 8.24 (laminar)
|
L9
|
12
|
CFD PreLab2 (2)
|
|
35
|
13
|
Turbulent flow
(Text 8.3)
Example1: 8.25
Example2: 8.33
|
8.35, 8.39 (turbulent)
|
36
|
16
|
roughness,
application pipe systems
(Text
8.4-8.7)
Example1: Friction factor
Example2: Friction factor (8.49)
Example3: 8.36
Example4: 8.39
|
8.48 (f)
8.74 (head loss)
|
L10
|
17
|
CFD Lab2 (1)
|
|
37
|
18
|
Continued,
Example1: Head loss (8.50)
Example2: Flow rate
Example3: Pipe diameter
Example4: Pipe diameter
Example5: 8.81 (Diameter)
|
SP3 (flow
rate)
8.80 (pipe diameter)
|
L10
|
19
|
CFD Lab2 (2)
|
|
38
|
20
|
Minor losses,
Example1: Minor losses
Example2: Minor losses
Example3: Minor losses
Example4: Minor losses (8.70)
Example5: 8.72
Example6: 8.77
|
8.81 (minor losses)
8.99 (minor losses)
|
|
23
|
|
|
|
24
|
|
|
|
25
|
Thanksgiving
Recess
|
|
|
26
|
|
|
|
27
|
|
|
39
|
30
|
Flow over
immersed bodies, lift and drag, boundary layer theory
(Text
9.1-9.2)
Example1: Laminar BL
Example2: Laminar BL
Summary of EFD and CFD study for the flow around Clark-Y
airfoil
|
9.13, 9.14
(laminar BL)
|
40
|
Dec 2
|
Laminar
boundary layer, continued
Example1: Laminar BL drag (9.46)
Example2: Laminar BL drag (9.36)
|
9.48
(laminar drag)
9.51 (transitional drag)
|
41
|
4
|
Turbulent
boundary layer
Example1: Turbulent BL velocity profile
Example2: Turbulent BL velocity profile
|
SP.4,
SP.5 (turbulent flat plate drag)
|
42
|
7
|
Bluff
body drag and lift
(Text
9.3-9.5)
Example1: Turbulent BL drag
Example2: Turbulent BL drag
|
9.68
(drag)
9.71 (drag)
|
43
|
9
|
Continued,
Example1: Stokes flow
Example2: Drag (9.61)
Example3: Drag and lift (9.95)
|
9.45 (Stokes flow)
9.101 (lift)
|
44
|
11
|
Post-test,
Post-survey
|
|
|
|
Final Exam: TBD
|
|