Class #
or Lab #
|
Date
|
Important Concepts
(Section # in Text Reading and Example)
or Lab Activities
|
Problems Assigned,
due next class: by 5:00 pm
|
1
|
Aug 24
|
Definition fluid; continuum hypothesis; fluid
properties
(Text 1.1 - 1.5)
Example: Ideal gas equation
(1.26)
|
1.25
(g,r,SG)
1.36
(ideal gas)
|
2
|
26
|
Viscosity, shear stress and rate of strain;
compressibility; vapor pressure/cavitation;
surface tension and capillary effects; flow
classification
(Text 1.6-1.11)
Example:
Shear stress (1.59)
|
1.53 (t)
1.68 (Ev)
|
3, L1
|
28
|
Fluid Mechanics: AFD, EFD, and CFD
|
1.79 (pv)
1.88 (s)
|
4
|
31
|
Pressure definition, force, and transmission;
absolute/gage/vacuum;
pressure variation with elevation liquids/gases;
pressure measurement (barometer, piezometer, manometers)
(Text 2.1-2.7)
Example:
Effects of surface tension
|
2.13
(pressure transmission)
2.19
(gases) |
5, L2
|
Sep 2
|
Experimental Methodology and
Uncertainty Assessment Procedures: EFD Pre-test
|
|
6
|
4
|
Hydrostatic forces on plane surfaces
(Text 2.8-2.9)
Example:
Manometer (2.29)
Concepts of EFD Lab 1
|
2.27
(u-tube manometer)
2.42
(differential manometer)
|
|
7 |
Labor Day: No Class |
|
L3
|
8
|
EFD Lab1
(1)
|
|
7
|
9
|
Continued
Example:
Plane surface (2.57)
|
2.52,
2.59 (plane surface)
|
L3
|
10
|
EFD Lab1
(2)
|
|
8
|
11
|
Hydrostatic forces curved surfaces (horizontal and
vertical components); buoyancy; hydrometer
(Text 2.10-2.11)
Example1:
Plane surface (2.58)
Example2:
Curved surface (1)
Example3:
Curved surface (2) (2.75)
|
2.78,
2.81 (curved surface)
|
9
|
14
|
Stability immersed and floating bodies; rigid body
translation and rotation
(Text 2.12-2.13)
Example:
Buoyancy (2.87)
|
2.83 (buoyancy)
2.88
(hydrometer) |
L3
|
15
|
EFD Lab1
(3)
|
|
10
|
16
|
Continued
Example1:
Stability
Example2:
Translation (1)
Example3:
Translation (2)
Example4:
Rotation (1)
Example5:
Rotation (2)
|
SP.1,
SP.2 (stability)
|
L3
|
17
|
EFD Lab1
(4)
|
|
11
|
18
|
Continued
Example:
Translation (3)
|
2.92
(translation)
2.98
(rotation)
|
12
|
21
|
Newton's 2nd Law for a Fluid, Steamline
Coordinates, Bernoulli equation
(Text 3.1-3.4)
Example1: Bernoulli equation
(along streamline) (3.2)
Example2: Bernoulli equation (normal
to streamline) (3.12)
|
3.3,
3.11 (streamline coordinates)
|
L4
|
22
|
EFD Lab2
(1)
|
|
13
|
23
|
Static Dynamic and total pressure, applications Bernoulli
equation, Flow Rate
(Text 3.5-3.6)
Example1:
Bernoulli equation (Q) (3.32)
Example2:
Bernoulli equation (along streamline)
Concepts of
EFD Lab 2 & CFD Lab 1
|
3.26
(Bernoulli equation, Q)
3.30
(Bernoulli equation, static and total pressure)
|
L4
|
24
|
EFD Lab2
(2)
|
|
14
|
25
|
Limitations Bernoulli
equation
(Text 3.7-3.9)
Example1:
Bernoulli equation (Sluice gate) (3.95)
Example2:
Bernoulli equation (along streamline)
Fluid kinematics, velocity, acceleration
(Text 4.1 - 4.2)
|
3.60
(Bernoulli equation, cavitation)
3.93
(Bernoulli equation, channel flow)
|
15
|
28
|
Continued, fluid kinematics, velocity, acceleration
Example:
Velocity (4.3)
|
4.5, 4.37
(velocity)
|
L4
|
29
|
EFD Lab2
(3)
|
|
16
|
30
|
Flow classification
Example1: Acceleration (1)
(4.27)
Example2:
Acceleration (2)
|
4.15,
4.24 (acceleration)
|
L4
|
Oct
1
|
EFD Lab2
(4)
|
|
17
|
2
|
Review 1
|
|
18
|
5
|
EXAM 1
|
|
19, L5
|
7
|
Introduction to Computational Fluid
Dynamics: CFD Pre-test
|
|
20
|
9
|
Control volume approach and RTT
(Text 4.3-4.5)
Example1: RTT (4.60)
Example2: RTT (4.61)
Control Volume Analysis, continuity equation
(Text
5.1)
Example:
Continuity (5.8)
|
5.5,
5.9 (control volume) |
21
|
12
|
Continued, continuity equation
Example1: Steady flow continuity
(5.13)
Example2: Unsteady flow continuity
(5.23)
Example3: Falling
cylinder
|
5.14,
5.15 (continuity)
|
L6
|
13
|
CFD
PreLab1 (1)
|
|
22
|
14
|
Momentum Equation
(Text 5.2)
Example1: Momentum, bend
(5.31)
Example2: Momentum, nozzle
(5.36)
|
5.32
(momentum, bend)
5.33
(momentum, nozzle)
|
L6
|
15
|
CFD PreLab1
(2)
|
|
23
|
16
|
Continued
Example1: Bend (5.48)
Example2: Vane (5.62)
Example3: Jet (5.65)
|
5.52
(nozzle)
5.66,
5.67 (vane)
|
24
|
19
|
Energy equation
(Text 5.3-5.5)
Example1:
Head loss (5.90)
Example2:
Moving
vane
|
5.91 (head loss)
5.95 (head loss)
|
L7
|
20
|
CFD Lab1
(1)
|
|
25
|
21
|
Concept of Hydraulic and Energy Grade Lines
Example1: Energy, pump
(5.107)
Example2:
Energy, turbine (5.119)
|
5.110
(energy, turbine)
5.111
(energy, pump)
|
L7
|
22
|
CFD Lab1
(2)
|
|
26
|
23
|
Application of the Energy, Momentum, and
Continuity Equations in Combination
Example1:
Bend (5.103)
Example2:
Sluice gate
|
SP-1
(energy + momentum)
SP-2
(energy + momentum)
|
27
|
26
|
Differential Analysis, relative motion, vorticity, continuity, and stream function
(Text 6.1-6.2)
Example1: Fluid
kinematics and vorticity (6.4)
Example2: Continuity (6.20)
|
6.6
(vorticity)
6.10 (continuity)
|
L8
|
27
|
EFD Lab3
(1)
|
|
28
|
28
|
Momentum equation and differential analysis of
fluid flow
(Text 6.3, 6.8-6.11)
Example1:
Cotinuity (6.21)
Example2:
Exact solutions of NS (Couette flow) (6.81)
Concepts
of EFD Lab 3 & CFD Lab 2
|
6.73 (Couette flow)
6.75 (Flow between fixed plates)
|
L8
|
29
|
EFD Lab3
(2)
|
|
29
|
30
|
Continued
Example1: Exact solutions of NS
(Rotating cylinder) (6.94)
Example2:
Exact solutions of NS (Poiseuille flow) (6.77)
|
6.78 (Poiseuille
flow)
6.90 (pipe flow)
|
30
|
Nov 2
|
Dimensional homogeneity; dimensional
analysis; Pi theorem;
Important non-dimensional parameters
(Text 7.1-7.7)
Example1:
Pi parameters (7.13)
Example2:
Pi parameters (7.19)
|
7.9,
7.12 (Pi parameters)
|
L8
|
3
|
EFD Lab3
(3)
|
|
31
|
4
|
Similarity and model testing
(Text 7.8-7.11)
Example1: Re similarity (1)
(7.47)
Example2: Fr similarity (1)
(7.46)
Example3:
Re similarity (2)
Example4:
Fr similarity (2)
EFD Lab3
concepts: drag calculation
|
7.55
(Re similarity)
7.60 (Fr similarity)
|
L8
|
5
|
EFD Lab3
(4)
|
|
32
|
6
|
Review 2
|
|
33
|
9
|
EXAM 2
|
|
L9
|
10
|
CFD PreLab2
(1)
|
|
34
|
11
|
Viscous Flow in Pipes, entrance and developing
flow, laminar flow, friction factor
(Text 8.1-8.2)
Example1: 8.17
Example2: 8.19
|
8.12,
8.18 (laminar)
|
L9
|
12
|
CFD PreLab2
(2)
|
|
35
|
13
|
Turbulent flow
(Text 8.3)
Example1: 8.25
Example2: 8.33
|
8.21,
8.27
(turbulent)
|
36
|
16
|
roughness, application pipe systems
(Text 8.4-8.7)
Example1:
Friction factor
Example2:
Friction factor (8.38)
Example3: 8.36
Example4: 8.39
|
8.31
(f)
8.58 (head loss)
|
L10
|
17
|
CFD Lab2
(1)
|
|
37
|
18
|
Continued,
Example1:
Head loss (8.35)
Example2:
Flow rate
Example3:
Pipe diameter
Example4:
Pipe diameter
Example5: 8.81 (Diameter)
|
SP3 (flow rate)
8.80
(pipe diameter)
|
L10
|
19
|
CFD Lab2
(2)
|
|
38
|
20
|
Minor losses,
Example1:
Minor losses
Example2:
Minor losses
Example3:
Minor losses
Example4:
Minor losses (8.85)
Example5: 8.72
Example6: 8.77
|
8.85
(minor losses)
8.93 (minor losses)
|
|
23 |
|
|
|
24 |
|
|
|
25 |
Thanksgiving Recess
|
|
|
26 |
|
|
|
27 |
|
|
39
|
30
|
Flow over immersed bodies, lift and drag,
boundary layer theory
(Text 9.1-9.2)
Example1:
Laminar BL
Example2:
Laminar BL
Summary of EFD
and CFD study for the flow around Clark-Y airfoil
|
9.10,
9.11 (laminar BL)
|
40
|
Dec 2
|
Laminar boundary layer,
continued
Example1:
Laminar BL drag (9.28)
Example2: Laminar BL drag (9.29)
|
9.34
(laminar drag)
9.37 (transitional drag)
|
41
|
4
|
Turbulent boundary layer
Example1:
Turbulent BL velocity profile
Example2:
Turbulent BL velocity profile
|
SP.4,
SP.5 (turbulent flat
plate drag)
|
42
|
7
|
Bluff body drag and lift
(Text 9.3-9.5)
Example1:
Turbulent BL drag
Example2:
Turbulent BL drag
|
9.56 (drag)
9.61 (drag)
|
43
|
9
|
Continued,
Example1:
Stokes flow
Example2: Drag (9.48)
Example3: Drag and lift (9.86)
|
9.38
(Stokes flow)
9.93 (lift)
|
44
|
11
|
Post-test, Post-survey
|
|
|
|
Final Exam: TBD
|
|