8.50 Two equal length, horizontal pipes, one with a diameter of 1 in., the other with a diameter of 2 in., are made of the same material and carry the same fluid at the same flow rate. Which pipe produces the larger head loss? Justify your answer.

For either pipe $h_L = f \frac{1}{6} \frac{V^2}{2g}$, where $V = Q/A = Q/(\frac{\pi}{4}D^2)$.

Thus, $h_{L} = f \frac{l}{D} \left[4Q/(\pi D^{2}) \right]^{2}/2g = \frac{8}{\pi^{2}} f \frac{l}{D^{5}} Q^{2}/g$ or $h_{L} = \left[\frac{8}{\pi^{2}} \frac{lQ^{2}}{g} \right] \frac{f}{D^{5}}$ (1)

Let (), and ()₂ denote the 1 in. and 2 in. diameter pipes, respectively. Thus, with $Q_1 = Q_2$ and $L_1 = L_2$, Eq. (1) gives

$$\frac{h_{L_{1}}}{h_{L_{2}}} = \frac{(f_{1}/D_{1}^{5})}{(f_{2}/D_{2}^{5})} = \left(\frac{f_{1}}{f_{2}}\right) \left(\frac{D_{2}}{D_{1}}\right)^{5} = \left(\frac{f_{1}}{f_{2}}\right) \left(\frac{2 i n.}{1 i n.}\right)^{5}$$
or
$$\frac{h_{L_{1}}}{h_{L_{2}}} = 32 \left(\frac{f_{1}}{f_{2}}\right) \tag{2}$$

Although $f_1 \neq f_2$ (because $Re_1 \neq Re_2$ and $\epsilon/D_1 \neq \epsilon/D_2$) the ratio f_1/f_2 would not be significantly different than 1, especially compared to the factor of 32 in Eq. (2). For example, assume $Re_1 = 10,000$ and $\epsilon/D_1 = 0.001$ so that $f_1 = 0.033$ (see Fig. 8.20). Thus, since

 $Re = VD/V = (Q/\frac{\pi}{4}D^2)D/V = \frac{4Q}{\pi V}/D$ it follows that if $Re_1 = 10,000$, then $Re_2 = 5,000$ and $E/D_2 = 0.0005$ if $E/D_1 = 0.001$. Hence, $f_2 = 0.03750$ that $h_{L_1}/h_{L_2} = 32 (0.033/0.037) = 28.5 >> 1$. Similar results would be true for other $Re_1 = E/D$ values.

Thus, $h_{L_1}/h_{L_2}=32(f_1/f_2)>1$, The smaller pipe has the larger head loss.