River models are used to study many different types of flow situations. (See, for example, Video V7.12) A certain small river has an average width and depth of 60 ft and 4 ft, respectively, and carries water at a flowrate of 700 ft³/s. A model is to be designed based on Froude number similarity so that the discharge scale is 1/250. At what depth and flowrate would the model operate?

For Froude number similarity

$$\frac{V_m}{V_{g_m}l_m'} = \frac{V}{V_{gl}}$$

where I is some characteristic length, and with gm = g

Since the flowrate is Q=VA, where A is the appropriate cross sectional area,

$$\frac{\varphi_m}{\varphi} = \frac{V_m A_m}{V A} = \sqrt{\frac{l_m}{L}} \frac{A_m}{A}$$

$$A | so, \qquad \frac{A_m}{A} = \left(\frac{l_m}{L}\right)^2$$

$$so that \qquad \frac{\varphi_m}{\varphi} = \left(\frac{l_m}{L}\right)^{5/2} = \frac{1}{250}$$
(1)

Thus,
$$\frac{\ell_m}{\ell} = 0.110$$

and for a prototype depth of 4 ft the corresponding model depth is

The model flowrate is obtained from Eq. (1):