6.15

For each of the following stream functions, with units of m2/s, determine the magnitude and the angle the velocity vector makes with the x-axis at x = 1 m, y = 2 m. Locate any stagnation points in the flow field.

(a)
$$\psi = xy$$

(a)
$$\psi = xy$$

(b) $\psi = -2x^2 + y$

From the definition of the stream function,
$$u = \frac{\partial \Psi}{\partial y} \qquad v = -\frac{\partial \Psi}{\partial x} \qquad (Eqs. 6.37)$$

(a) For
$$\psi = xy$$
,
 $u = \frac{\partial \psi}{\partial y} = x$ $v = -\frac{\partial \psi}{\partial x} = -y$

At X=1m, y=2m, it follows that u=1 m and v=-2 m

Thus,

$$|V| = \sqrt{u^2 + v^2} = \sqrt{(|m|)^2 + (-z_m)^2} = 2.24 \frac{m}{s}$$

 $-2 \sqrt{\theta} \times \tan \theta = -\frac{z}{1} = 0 = -63.4^{\circ}$

Since u= 0 at x=0 and v=0 at y=0, a stagnation point occurs at x=y=0.

(b) For
$$\psi = -2x^{2} + y$$
,

 $u = \frac{\partial \psi}{\partial y} = 1 \frac{m}{3}$ $v = -\frac{\partial \psi}{\partial x} = 4x$

At $x = 1m$, $y = 2m$, it follows that $u = 1 \frac{m}{3}$ and $v = 4 \frac{m}{3}$

Thus,

 $|V| = \sqrt{u^{2} + v^{2}} = \sqrt{(1 \frac{m}{3})^{2} + (4 \frac{m}{3})^{2}} = \frac{4.12 \frac{m}{3}}{5}$
 $|V| = \sqrt{4}$
 $|V| = \sqrt{4}$

Since U. + 0, there are no stagnation points.