
5.111 A pump is to move water from a lake into a large, pressurized tank as shown in Fig. P5.111 at a rate of 1000 gal in 10 min or less. Will a pump that adds 3 hp to the water work for this purpose? Support your answer with appropriate calculations. Repeat the problem if the tank were pressurized to 3, rather than 2, atmospheres.

 $\frac{P_1}{8^2} + Z_1 + \frac{V_1^2}{2g} + h_s - h_z = \frac{P_2}{8^2} + Z_2 + \frac{V_2^2}{2g}$, where $p_1 = 0$, $Z_1 = 0$, $V_1 = 0$, and $Z_2 = 20H$.

Thus,

Thus,
(1)
$$h_s = h_L + \frac{\rho_z}{r} + Z_2$$
.
Also,
 $Q = [(1000 \, qal) / (10 \, min)] \left(\frac{1 \, ft^3}{7.48 \, qal} \right) \left(\frac{1 \, min}{60 \, s} \right) = 0.223 \, \frac{ft^3}{s}$
so that
 $h_s = \frac{\dot{W}_s}{r} = \frac{(3 \, hp)(550 \, \frac{ft \cdot lb/s}{hp})}{(62.4 \, \frac{lb}{ft^3})(0.223 \, \frac{ft^3}{s})} = 119 \, ft$

(a) If $p_2 = 2 \text{ atm} = 2(14.7 \frac{1b}{\ln^2})(144 \ln^2/ft^2) = 4,230 \frac{1b}{ft^2}$, then from Eq.(1) $h_s = h_L + \frac{4,230 \frac{1b}{ft^2}}{(62,4 \frac{1b}{ft^3})} + 20ft = h_L + 87.8 ft$ Thus, if $h_L \leq h_S - 87.8 ft = 1/9 ft - 87.8 ft = 31.2 ft \text{ the given pump will work for } p_2 = 2 \text{ atm}.$

(b) If
$$p_2 = 3$$
 atm = 6, 350 $\frac{16}{H^2}$, then
$$h_s = h_L + \frac{6,350 \frac{16}{H^3}}{(62.4 \frac{16}{H^3})} + 20 \text{ft} = h_L + 122 \text{ft}$$

Thus, if this pump is to work

119ft = h_ +122ft, or h_ = -3ft

Since it is not possible to have $h_L < 0$, the pump will not work for $p_2 = 3$ atm.