5.19

5.19 Various types of attachments can be used with the shop vac shown in Video V5.2. Two such attachments are shown in Fig. P5.19—a nozzle and a brush. The flowrate is 1 ft³/s. (a) Determine the average velocity through the nozzle entrance, V_n . (b) Assume the air enters the brush attachment in a radial direction all around the brush with a velocity profile that varies linearly from 0 to V_b along the length of the bristles as shown in the figure. Determine the value of V_b .

BFIGURE P5.19

(a)
$$Q_1 = Q_2$$
 where $Q_2 = 1 \frac{ft^3}{s}$
Thus,
 $A_1 V_1 = Q_2$ or $V_1 = V_n = \frac{1 \frac{ft^3}{s}}{\frac{H}{4}(\frac{2}{12}ft)^2}$
 $V_n = \frac{45.8 \frac{ft}{s}}{\frac{H}{2}}$

(b)
$$Q_3 = Q_4$$
 where $Q_4 = I \frac{fI^3}{s}$ and $Q_3 = \overline{V_3} A_3$ where $\overline{V_3} = average \ velocity \ at (3) = \frac{1}{2} V_b$ and $A_3 = \pi D_3 h_3$ Thus, $\frac{1}{2} V_b \left[\pi \left(\frac{3}{12} fI \right) \left(\frac{I.5}{12} fI \right) \right] = I \frac{fI^3}{s}$, or $V_b = 20.4 \frac{fI}{s}$