NAME
Fluids-ID

Quiz 6. A water jet pump (See figure) involves a jet cross sectional area of $0.01 \mathrm{~m}^{2}$, and a jet velocity of $30 \mathrm{~m} / \mathrm{s}$. The jet is surrounded by entrained water. The total cross-sectional area associated with the jet and entrained streams is $0.075 \mathrm{~m}^{2}$. These two fluid streams leave the pump thoroughly mixed with an average velocity of $6 \mathrm{~m} / \mathrm{s}$ through a cross-sectional area of $0.075 \mathrm{~m}^{2}$. Determine the pumping rate (i.e. the entrained fluid flowrate) involved in $\mathrm{m}^{3} / \mathrm{s}$.

Note: Attendance (+2 points), format (+1 point)

Solution:

Continuity eq. for fixed CV with 1D flows and discrete CS's,
$0=\sum \dot{m}_{\text {out }}-\sum \dot{m}_{\text {in }}$
(+4 points)

Where $\dot{m}=\rho Q=\rho V A$, thus
$0=\left(\rho V_{3} A_{3}\right)-\left(\rho V_{1} A_{1}+\rho Q_{2}\right)$
(+2 points)
$\therefore Q_{2}=V_{3} A_{3}-V_{1} A_{1}=\left[\left(6 \frac{\mathrm{~m}}{\mathrm{~s}}\right)\left(0.075 \mathrm{~m}^{2}\right)-\left(30 \frac{\mathrm{~m}}{\mathrm{~s}}\right)\left(0.01 \mathrm{~m}^{3}\right)\right]=0.15 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$
(+1 point)

