November 11, 2013

NAME

Fluids-ID

Quiz 11.

- A. The drag D on a sphere moving in a fluid is known to be function of the sphere diameter d , the velocity V , and the fluid viscosity μ and density ρ . Using the pi theorem, find an appropriate dimensionless relationship.
- B. Laboratory tests on a 4-in-diameter sphere model were performed in a water tunnel and some model data are plotted in the Figure. Estimate the prototype drag on a 8-ft-diameter balloon moving in air at a velocity 3.28 ft/s. (Hint: You will need to set Π parameters for the tests and the balloon equal to each other)

Notes:

•
$$
D = F
$$
; $d = L$; $V = LT^{-1}$; $\rho = FL^{-4}T^2$; $\mu = FL^{-2}T$

- For water: $\mu_m = 2.3 \times 10^{-5}$ lb⋅s/ft² and $\rho_m = 1.94$ slug/ft³
- For air: $\mu = 3.7 \times 10^{-7}$ lb⋅s/ft² and $\rho = 2.38 \times 10^{-3}$ slug/ft³

Attendance (+2 points), format (+1 point)

Solution:

A. From the Buckingham Pi theorem, $k - r = 5 - 3 = 2 \Pi$ term is needed. Use μ and D as repeated variables.

First Π parameter

Units

$$
F^0L^0T^0 \doteq (FL^{-2}T)(L)^a(LT^{-1})^b(FL^{-4}T^2)^c
$$

 $\Pi_1 = \mu d^a V^b \rho^c$

or

$$
F^0L^0T^0 \doteq F^{(1+c)}L^{(-2+a+b-4c)}T^{(1-b+2c)}
$$

To be dimensionless it follows that

F:
$$
1 + c = 0
$$

L: $-2 + a + b - 4c = 0$
T: $1 - b + 2c = 0$

Therefore, $a = -1$, $b = -1$, $c = -1$.

$$
\Pi_1 = \frac{\mu}{\rho V d} \left(\text{or } \frac{\rho V d}{\mu} \right) \qquad (+2 \text{ points})
$$

Second Π parameter

$$
\Pi_2 = D d^a V^b \rho^c
$$

Units

November 11, 2013

or

$$
F^{0}L^{0}T^{0} \doteq (F)(L)^{a}(LT^{-1})^{b}(FL^{-4}T^{2})^{c}
$$

$$
F^{0}L^{0}T^{0} \doteq F^{(1+c)}L^{(a+b-4c)}T^{(-b+2c)}
$$

To be dimensionless it follows that

F:
$$
1+c = 0
$$

L: $a+b-4c = 0$
T: $-b+2c = 0$

Therefore, $a = -2$, $b = -2$, $c = -1$.

$$
\Pi_2 = \frac{D}{\rho V^2 d^2} \qquad (+2 \text{points})
$$

Thus, the functional relationship must be of the from

$$
\frac{D}{\rho V^2 d^2} = \phi \left(\frac{\rho V d}{\mu} \right)
$$

 $\rho_m V_m d_m$

B. From Re similarity

or

$$
\frac{\rho_m V_m d_m}{\mu_m} = \frac{\rho V d}{\mu}
$$

$$
V_m = \left(\frac{\mu_m}{\mu}\right) \left(\frac{\rho}{\rho_m}\right) \left(\frac{d}{d_m}\right) V
$$

$$
V_m = \left(\frac{2.3 \times 10^{-5}}{3.7 \times 10^{-7}}\right) \left(\frac{2.38 \times 10^{-3}}{1.94}\right) \left(\frac{8}{4/12}\right) (3.28) = 6 ft/s \qquad (+1 \text{ point})
$$

From the graph for $V_m = 6 ft/s$ $D_m = 1.75 lb$ (+1 point)

$$
\frac{D}{\rho V^2 d^2} = \frac{D_m}{\rho_m V_m^2 d_m^2}
$$

or

$$
D = \left(\frac{\rho}{\rho_m}\right) \left(\frac{V}{V_m}\right)^2 \left(\frac{d}{d_m}\right)^2 D_m
$$

Therefore

$$
D = \left(\frac{2.38 \times 10^{-3}}{1.94}\right) \left(\frac{3.28}{6}\right)^2 \left(\frac{8}{4/12}\right)^2 (2) = 0.37 \, lb \quad (+1 \text{ point})
$$