November 4, 2013

Fluids-ID

Quiz 10. An oil film drains steadily down the side of a vertical wall, as shown on the Figure. After an initial development at the top of the wall, the film becomes independent of z and of constant thickness (δ). Assume that w = w(x), pressure gradient is negligible, and shear stress (τ) at the free surface is zero.

- A. Solve Navier-Stokes for w(x).
- B. If the oil is SAE 30W ($\rho = 891 \text{ kg/m}^3$ and $\mu = 0.29 \text{ kg/m} \cdot \text{s}$), $\delta = 2 \text{ mm}$, and the plate width (into the paper) W=1 m and height H=2 m, find (a) the maximum velocity w_{max} , (b) flow rate Q, (c) average velocity \overline{w} , (d) shear stress on the wall τ_w , and (e) the friction drag force acting on the plate D.

Continuity:	$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$
Momentum:	$\rho\left(\frac{\partial w}{\partial t} + u\frac{\partial w}{\partial x} + v\frac{\partial w}{\partial y} + w\frac{\partial w}{\partial z}\right) = -\frac{dp}{dz} - \rho g + \mu\left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2}\right)$
Flow rate:	$Q = \int_{A} \underline{V} \cdot \underline{dA}$
Average velocity:	$\overline{w} = Q/A$
Shear stress:	$\tau = \mu \frac{dw}{dx}$
Friction drag:	$D = \tau_w \cdot S$, where $S =$ wetted area

Note: Attendance (+2 points), format (+1 point) Part A:

The assumption of parallel flow, u = v = 0 and w = w(x), satisfies continuity and makes the x and z momentum equations irrelevant. We are left with the z momentum equation

$$\rho\left(0+0\times\frac{\partial w}{\partial x}+0\times\frac{\partial w}{\partial y}+w\times0\right) = -(0)-\rho g + \mu\left(\frac{\partial^2 w}{\partial x^2}+0+0\right)$$

There no convective acceleration and the pressure gradient is negligible due to the free surface. We are left with a second order linear differential equation for w(x)

$$\frac{d^2w}{dx^2} = \frac{\rho g}{\mu}$$

November 4, 2013

Integrating

$$\frac{dw}{dx} = \frac{\rho g}{\mu} x + C_1$$
$$w = \frac{\rho g}{2\mu} x^2 + C_1 x + C_2$$

At the free surface, $\tau(\delta) = \mu \frac{dw}{dx} = 0$, or $\frac{dw}{dx} \Big|_{x=\delta} = 0$, hence $C_1 = -\rho g \delta / \mu$

At the wall, $w(0) = 0 = C_2$

Therefore

$$w = \frac{\rho g}{2\mu} x^2 - \frac{\rho g \delta}{\mu} x = \frac{\rho g}{2\mu} (x^2 - 2\delta x)$$
 (+4.5 points)

Part B:

(a) Maximum velocity is where $\frac{dw}{dx} = \frac{\rho g}{2\mu}(2x - 2\delta) = 0$ or $x = \delta$, thus

$$w_{max} = w(\delta) = -\frac{\rho g \delta^2}{2\mu} = -\frac{(891)(9.81)(0.002)^2}{(2)(0.29)} = -0.06 \ m/s \tag{+0.5 point}$$

(b) Flow rate is

$$Q = \int_0^\delta w(x) \cdot (-Wdx) = -W \cdot \left[\frac{\rho g}{2\mu} \left(\frac{x^3}{3} - \delta x^2\right)\right]_0^\delta = \frac{\rho g \delta^3 W}{3\mu}$$

$$\therefore Q = \frac{(891)(9.81)(0.002)^3(1)}{(3)(0.29)} = 8.04 \times 10^{-5} m^3/s$$
(+0.5 point)

(c) Average velocity is

$$\overline{w} = \frac{Q}{A} = \frac{Q}{W \cdot \delta} = \frac{8.04 \times 10^{-5}}{(1)(0.002)} = 0.04 \ m/s \tag{+0.5 point}$$

(d) Wall shear stress is

$$\tau_w = \mu \frac{dw}{dx} \Big|_{x=0} = \mu \cdot \frac{\rho g}{2\mu} (2x - 2\delta) \Big|_{x=0} = -\rho g \delta = -(891)(9.81)(0.002) = -17.48 \, N/m^2$$

(+0.5 point)

(e) Friction drag is

$$D = \tau_w \cdot S = \tau \cdot (W \cdot H) = (-17.48)(1)(2) = -35 N$$
 (+0.5 point)