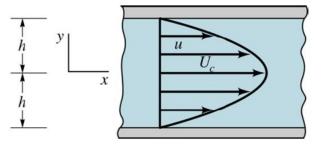
October 31, 2012

Quiz 10. Oil ($\mu = 0.4 \text{ N} \cdot \text{s/m}^2$) flows between two fixed horizontal infinite parallel plates with a spacing of 5 mm. The flow is laminar and steady with a constant pressure gradient $dp/dx = -900 \text{ N/m}^3$. Determine the shear stress $\tau_{xy} = \mu(\partial u/\partial y + \partial v/\partial x)$ at y = h, by solving Navier Stokes equation.



Continuity:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$
Navier Stokes:

$$\rho \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} \right) = -\frac{dp}{dx} + \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$$

Solution:

Since the flow is steady and parallel, $\partial u/\partial t = 0$ and v = 0. From the continuity equation, $\partial u/\partial x = 0$. Then, the Navier Stokes equation is rewritten as

$$\frac{\partial^2 u}{\partial y^2} = \frac{1}{\mu} \left(\frac{dp}{dx} \right)$$
 (+ 4 points)

By integrating the Navier Stoke equation twice to yield

$$u = \frac{1}{2\mu} \left(\frac{dp}{dx}\right) y^2 + c_1 y + c_2$$

To satisfy the no-slip boundary conditions, i.e. u = 0 at $y = \pm h$,

$$c_1 = 0$$

$$c_2 = -\frac{1}{2\mu} \left(\frac{dp}{dx}\right) h^2$$

Thus, the velocity distribution becomes

$$u = \frac{1}{2\mu} \left(\frac{dp}{dx}\right) (y^2 - h^2)$$
 (+4 points)

October 31, 2012

Hence,

$$\tau_{xy} = \mu \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) = \left(\frac{dp}{dx} \right) y$$

At y = h,

$$\tau_{xy} = \left(-900 \frac{N}{m^3}\right) \left(\frac{0.005 \, m}{2}\right) = -2.25 \, N/m^2$$

(+2 points)