4.17

4.17 The velocity of air in the diverging pipe shown in Fig. P4.17 is given by $V_1 = 4t$ ft/s and $V_2 = 2t$ ft/s, where t is in seconds. (a) Determine the local acceleration at points (1) and (2). (b) Is the average convective acceleration between these two points negative, zero, or positive? Explain.

a)
$$\frac{\partial U}{\partial t}\Big| = \frac{4 \frac{ft}{s^2}}{s^2}$$
 and $\frac{\partial U}{\partial t}\Big| = \frac{2 \frac{ft}{s^2}}{s^2}$

b) convective acceleration along the pipe = $U \frac{\partial U}{\partial x}$ where U > 0. At any time, t, $V_2 < V_1$. Thus, between (1) and (2) $\frac{\partial U}{\partial x} \approx \frac{V_2 - V_1}{L} < 0$ Hence, $U \frac{\partial U}{\partial x} < 0$ or the average convective acceleration is negative.