# Flow around Clark-Y airfoil: Summary of EFD benchmark data and comparison with IIHR EFD data and CFD solution

## Nobuaki Sakamoto, Colin J. Johnson, Stuart Breczinski, Marian V. Muste and Frederick Stern IIHR-Hydroscience&Engineering, The University of Iowa

### 1. EFD benchmark data

[1] JACOBS E.N., STACK J., AND PINKERTON R.M., 1930 Airfoil pressure distribution investigation in the variable density wind tunnel, Langley Memorial Aeronautical Laboratory Report No. 353

[2] MARCHMAN J.F. AND WERME T.D., 1984 Clark-Y airfoil performance at low Reynolds numbers, In: proc. AIAA 22<sup>nd</sup> Aerospace Science Meeting, Jan. 9-12, Reno, Nevada, U.S.A.

[3] SILVERSTEN A., 1934, Scale effect on Clark-Y airfoil characteristics from NACA full-scale wind-tunnel tests, Langley Memorial Aeronautical Laboratory Report No. 502

[4] ZIMMERMAN C.H., Characteristics of Clark-Y airfoils of small aspect ratios, 1932, Langley Memorial Aeronautical Laboratory Report No. 431

The summary of EFD benchmark data is given in Table 1.

| Reference              | [1]                       | [2]                             |                                   | [3]                                                      | [4]                                 |
|------------------------|---------------------------|---------------------------------|-----------------------------------|----------------------------------------------------------|-------------------------------------|
| Digitized<br>data      | $C_p$ and $C_L$           | $C_p$ , $C_L$ and $C_D$         |                                   | $C_L$ and $C_D$                                          | $C_L$ and $C_D$                     |
| AR*                    | 7.2                       | 5.75                            |                                   | 6                                                        | 0.5, 0.75, 1,<br>1.25, 1.5, 2, 3, 6 |
| Re <sup>**</sup>       | 3.56e5                    | C <sub>P</sub>                  | 7.5e4                             | 1.12e6, 1.55e6,<br>2.06e6, 2.81e6,                       | 8.6e5                               |
|                        |                           | C <sub>L</sub> , C <sub>D</sub> | 5e4, 7.5e4,<br>1e5, 2e5,<br>6.7e6 | 3.19e6, 3.59e6                                           |                                     |
| α (deg) <sup>***</sup> | 1, 4, 7, 10,13,<br>17, 20 | C <sub>P</sub>                  | 0, 4, 6, 8, 12,<br>14             | 0, 1, 2, 3,<br>4, 5, 6, 7, 8, 9, 10,                     | 0, 10, 15, 20,<br>25, 30, 35, 39,   |
|                        |                           | C <sub>L</sub> , C <sub>D</sub> | 0, 4, 6, 8, 12,<br>14             | 11, 12, 13, 14, 15,<br>16, 17, 18, 19, 20,<br>21, 22, 23 | 40, 42, 50, 60                      |
| Wingtip                |                           | End plates                      |                                   | Wing cross section                                       | Rectangular                         |

#### Table 1 Summary of EFD benchmark data

\*: Aspect ratio, \*\*: Reynolds number, \*\*\*: Angle of attack

#### 2. Trend of each data set

#### 2.1 Reference [1]



Fig. 2 Trend of  $C_P$  in Reference [1]



Fig. 4 Re dependency of  $C_{Lmax}$ ,  $C_{Dmax}$  and  $\alpha_{max}$  in Reference [2]: (a)  $C_{Lmax}$ ,  $C_{Dmax}$  vs Re, (b)  $\alpha_{max}$  vs Re



Fig. 5 Trend of  $C_P$  in Reference [2]





Fig. 7 Re dependency of  $C_{Lmax}$  and  $\alpha_{max}$  for  $C_L$  in Reference [3]: (a)  $C_{Lmax}$  vs Re, (b)  $\alpha_{max}$  vs Re





Fig. 9 Aspect ratio dependency of  $C_{Lmax}$  and  $\alpha_{max}$  for  $C_{L}$  in Reference [4]: (a)  $C_{Lmax}$  vs AR, (b)  $\alpha_{max}$  vs AR

3. Comparison between the reference experimental data



3.1 C<sub>L</sub> vs  $\alpha$  with largest AR





Fig. 11  $C_D$  vs  $\alpha$  with largest AR: (a) Re=O(10<sup>5</sup>), (b) Re=O(10<sup>6</sup>)



3.3  $C_L/C_D$  vs  $\alpha$  with largest AR





Fig. 13 Re dependency for  $C_{Lmax}$ ,  $C_{Dmax}$  and  $\alpha_{max}$ : (a)  $C_{Lmax}$ ,  $C_{Dmax}$  vs Re, (b)  $\alpha_{max}$  vs Re



Fig. 14 C<sub>P</sub> distribution with largest AR: (a)  $\alpha \approx 0$  deg, (b)  $\alpha \approx 4$  deg, (c)  $\alpha \approx 7$  deg, (d)  $\alpha \approx 13$  deg



4. Comparison with Flowlab simulation results 4.1  $C_L\,vs\,\alpha$ 

Fig. 15 C<sub>L</sub> vs  $\alpha$  with largest AR, Flowlab solutions added: (a) Re=O(10<sup>5</sup>), (b) Re=O(10<sup>6</sup>)



Fig. 16 C<sub>D</sub> vs  $\alpha$  with largest AR, Flowlab solutions added: (a) Re=O(10<sup>5</sup>), (b) Re=O(10<sup>6</sup>)



Fig. 17  $C_D$  vs  $\alpha$  with largest AR, Flowlab solutions added: (a) Re=O(10<sup>5</sup>), (b) Re=O(10<sup>6</sup>)



#### 4.3 $C_P$ with largest AR

Fig. 18 C<sub>P</sub> distribution with largest AR, Flowlab solutions added (a)  $\alpha \approx 0$ deg, (b)  $\alpha \approx 4$ deg, (c)  $\alpha \approx 7$ deg, (d)  $\alpha \approx 13$ deg



5. Comparison between EFD benchmark data and IIHR experimental data 5.1  $C_L$  vs  $\alpha$ 

Fig. 19 C<sub>L</sub> vs  $\alpha$ , IIHR EFD data added: (a) large AR ( $\geq$ 5.75), (b) small AR (1.5 $\leq$ AR $\leq$ 3)



Fig. 20 C<sub>D</sub> vs  $\alpha$ , IIHR EFD data added: (a) large AR ( $\geq$ 5.75), (b) small AR (1.5 $\leq$ AR $\leq$ 3)



Fig. 21 C<sub>P</sub> distribution, IIHR EFD data added: (a)  $\alpha \approx 0$  deg, (b)  $\alpha \approx 16$  deg





Fig. 22  $C_L$  and  $C_D$  vs  $\alpha$ : (a)  $C_L$ , (b)  $C_D$ 



Fig. 23 C<sub>P</sub> distribution: (a)  $\alpha \approx 0$  deg, (b)  $\alpha \approx 16$  deg

7. Discussion and Conclusion (To be added.)