by slowly changing A to B over the course of the
simulation, performing a computer experiment that
is impossible to conduct in the laboratory in order
to derive experimentally measurable quantities.

Another simulation method, quantum dynamics,
treats the atoms of particular interest with quantum-
mechanical methods, and the rest of the system
by using a force-field model. This technique will
allow the simulation of such phenomena as proton
exchange and enzymatic activity, impossible to
do with force fields alone. See FREE ENERGY,
SIMULATION.

Interactive computer graphics. Although not strictly
a branch of theory, interactive graphics has become
so prevalent in the chemical community that it is al-
most impossible to conceive of calculations without
associated molecular manipulation and visualiza-
tion. The chemist is essentially working with a so-
phisticated set of molecular models that are stored
in the computer memory and displayed on a screen.
Moving a mouse or turning a dial moves atoms
about on the screen as easily as tangible models
can be moved physically. Stereoscopic views are
produced either by placing left- and right-eye im-
ages next to each other on the screen and using a
viewer to merge the images, or by alternately blink-
ing left- and right-eye images and looking through
a viewer that presents the correct image to each
eye.

Molecular orbitals, electron densities, and
normal-mode vibrations also can be viewed from
any direction. The sequence of conformations from
computer simulations, displayed one frame after
another, in effect creates a movie of the thermal
motion of the molecules.

These techniques are most useful when studying
interactions between large molecules, and they
are often used in the design of potential drug
molecules. The intuition of the scientist is used
to position new molecules into an active site
of an enzyme or to make alterations to the
molecule that may improve its effectiveness as a
drug. These structures are then used as starting
geometries for further computational studies. See
COMPUTER GRAPHICS; CONFORMATIONAL ANALYSIS;
STEREOCHEMISTRY. Zelda R. Wasserman

Bibliography. M. P. Allen and D. J. Tildesley,
Computer Simulation of Liquids, 1991; U. Burkert
and N. Allinger, Molecular Mechanics, 1982;
T. Clark, A Handbook of Computational Chemistry,
1985; D. M. Hirst, A Computational Approach to
Chemistry, 1990; K. B. Lipkowitz and D. B. Boyd
(eds.), Reviews in Computational Chemistry, vols.
1-6, 1990-1995.
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Computational fluid dynamics

The numerical approximation to the solution of
mathematical models of fluid flow and heat transfer.
Computational fluid dynamics is one of the tools (in
addition to experimental and theoretical methods)

Computational fluid dynamics

available to solve fluid-dynamic problems. With
the advent of modern computers, computational
fluid dynamics evolved from potential-flow and
boundary-layer methods and is now used in
many diverse fields, including engineering, physics,
chemistry, meteorology, and geology.
Computational methods. The fundamental model
of fluid flow, known as the Navier-Stokes equations,
is derived from the conservation of mass, momen-
tum, and energy. For example, if the fluid is incom-
pressible, the Navier-Stokes equations can be writ-
ten as Egs. (1) and (2), where u, v, and w are the
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cartesian components of velocity, p the fluid den-
sity, p the pressure, and p the fluid viscosity. The
compressible form of the Navier-Stokes equations,
which is of slightly different form because of the
variable fluid properties, additionally contains the
energy equation, which couples the temperature,
velocity, and pressure fields. The complete formu-
lation requires initial and boundary conditions and
thermodynamic relations for fluid properties. Nu-
merical solution of this set of nonlinear coupled
partial differential equations presents many difficul-
ties, including application of boundary conditions,
particularly for free and moving surfaces; grid gen-
eration for complex geometries; turbulence model-
ing; pressure-velocity coupling for incompressible
flows; and resolution of shock waves in supersonic
flows. A hierarchy of approaches is available for
simplifying Eqs. (1) and (2) [see table]. See DIFFER-
ENTIAL EQUATION; EULER'S MOMENTUM THEOREM,;
NAVIER-STOKES EQUATIONS.

Computational fluid dynamics is associated with
field-equation solutions of the Euler and Navier-
Stokes equations instead of other computational
techniques such as boundary-element methods for
inviscid flows and momentum-integral methods
for boundary-layer flows. The crucial elements of
computational fluid dynamics are discretization,
grid generation and coordinate transformation,
solution of the coupled algebraic equations,
turbulence modeling, and visualization.
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Hierarchy of approaches to fluid-flow problems*
Type of partial
Mathematical basis differential equation Physical problems

Laplace squation Elliptic inviscid and irrotational flo
Euler-equation Hyperbolic Inviscid flow ~
Boundary-layer equations Parabolic Thin viscous layer
Navier-Stokes equations Mixed {aminar flow
Reynolds-averaged Navier-Stokes

{RaN8) equations + turbulence model Mixed Turbulent flow
Large-gddy simulation

(Navier-Stokes equations + subgrid modal) Mixed Turbulent flow
Direct numerical solution

{Navier-Stokes equations -+ grid resolving all length scales) Mixed Turbulent flow

*Listad in order of increasing complexity of numerical solution.

Discretization. Numerical solution of partial differ-
ential equations requires representing the contin-
uous nature of the equations in a discrete form.
Discretization of the equations consists of a process
where the domain is subdivided into cells or ele-
ments (that is, grid generation) and the equations
are expressed in discrete form at each point in the
grid by using finite difference, finite volume, or fi-
nite element methods. The finite difference method
requires a structured grid arrangement (that is, an
organized set of points formed by the intersections
of the lines of a boundary-conforming curvilinear
coordinate system), while the finite element and fi-
nite volume methods are more flexible and can be
formulated to use both structured and unstructured
grids (that is, a collection of triangular elements or a

6 ‘ 5
n |
RV Y
o
(c)

Fig. 1. Computational grid for numerical analysis of flow about a hydrofoil. (a) Structured
grid. (b) Schematic of physical domain. (c) Schematic of computational domain.

random distribution of points). Complex shapes ne-
cessitate nonuniform, boundary-conforming grids
with grid points concentrated in regions of high
gradients, such as inside boundary layers or near
shock waves. Structured grids are usually gener-
ated by using algebraic interpolation functions or el-
liptic partial differential equations. For finite differ-
ence methods, the equations are rewritten in gen-
eralized nonorthogonal coordinates and evaluated
on a so-called computational domain, which is de-
fined by the transformation between the boundary-
conforming curvilinear-coordinate system in the so-
called physical domain and an orthogonal grid
with uniform spacing (Fig. 1). See FINITE ELEMENT
METHOD.

Finite difference discretization of Egs. (1) and
(2) is based on the algebraic representation of
derivatives by using Taylor-series expansions. For
example, the temporal derivative in Eq. (2a)
expressed as a first-order backward difference is
Eq. (3), where (4,7, k) is the location of the grid

du Ui —ul ;

ik ,
= — 4 (A
o Ar + #(A) (3

point, (2) is the current time level, (# — 1) is the
previous time level, Az is the time step between
(n) and (n — 1), and 9 (¢) represents the truncated
terms in the Taylor-series approximation of the
partial derivative 9u/387. (Dropping these terms
introduces a source of error, known as a truncation
error, which is of an order of magnitude equal to
that of the time step Az) Due to advantageous
stability characteristics, in comparison to central
differencing, an upstream-backward difference is
typically used for the convective terms. Assuming
that the grid is uniform and orthogonal, the first-
order upstream  difference for the x-component
convective term of Eq. (2a) is given by Eq. (4),

u% — Uj = Uy s

dx e Ax

where Ax or the grid spacing, and the grid
point locations (4,7, k) are given by a numerical
molecule (Fig. 2). Usually, the viscous terms in
the momentum equations are evaluated by using
a central difference. For example, the second-order
central difference of the second partial derivative

+ 2l(Ax) (4)
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of i in the x direction [from Eq. (2a)] is given by
Eq. (5).
8u . M?Jrl.j.k - 2”?._/./( + ”Ll.,/.k
dx’ (Ax)?

+9lAN0)Y] (D

Solution of equations. The assembly of the finite
difference equations for each grid point results
in a large implicit system of algebraic equations
for each of the velocity components (u, v, w). For
example, the equation for the u component of
velocity at the point (4,7, k) is Eq. (6), where A
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is a matrix of coefficients related to the grid and the
transformation relations (between the physical and
computational domains) and € is a known column
vector including pressure, body-force, and velocity
terms from the previous time step. Equation (6) is
usually solved by iterative schemes, such as the
alternating direction implicit (ADD method, which
is based upon splitting Eq. (6) into three tridiagonal
systems that correspond to sweeps along each
of the index (i.j, k) directions. If Eq. (4) and
Eq. (5) are evaluated at time level (n — 1) instead
of (n), the system of finite difference equations
is explicit and the solution at each point can be
directly evaluated. However, explicit formulations
have restrictions on the ratio of the time step to the
grid spacing, which are significant for viscous flows
because of the fine near-wall grid spacing required
to resolve the boundary layer. See MATRIX THEORY.

For either implicit or explicit approaches, ef-
ficient use of computers is required. Current-
generation  supercomputers are based on vector
processors, which are most efficient with large ar-
rays (vectors) of numbers. Optimizing a program,
or vectorization, is accomplished by following pro-
gramming rules so that the compiler can translate
the code into vector instructions. See SUPERCOM-
PUTER.

Complete solution of the Navier-Stokes equations
requires, for compressible flow, an cquation of
state such as the ideal gas equation, which
relates temperature and density. In contrast, the
solution of the incompressible equations presents
the problem that the system of equations is lacking
an equation for the direct solution of the pressure
field. Typically, an equation for pressure is derived
which satisfies continuity, and an algorithm must be
incorporated which iteratively couples the pressure
and velocity fields.

Turbulence modeling. There are a variety of ap-
proaches for resolving the phenomena of fluid
turbulence. The Reynolds-averaged Navier-Stokes
(RANS) equations, which are derived by decom-
posing the velocity into mean and fluctuating com-
ponents, contain additional turbulent Reynolds-
stress terms which are unknown. Closure of the
RANS equations can be accomplished by using the
Boussinesq assumption, which relates the Reynolds

Computational fluid dynamics

(ijk+1)
(i.j+1.K)
7z y
X (i-1,jk {i,j,k) (i+1,,K)
(ij-1,k
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Fig. 2. Numerical molecule, showing nomenclature for
neighboring grid points in finite difference discretization.

stresses to the mean rate of strain or the Reynolds-
stress equations, which can be solved directly with
additional modeling assumptions. An alternative to
the RANS equations is large-eddy simulation, which
solves the Navier-Stokes equations in conjunction
with a subgrid turbulence model. The most direct
approach to solving turbulent flows is direct nu-
merical simulation, which solves the Navier-Stokes
equations on a mesh that is fine enough to re-
solve all length scales in the turbulent flow. Unfor-
tunately, direct numerical simulation is limited to
simple geometries and low-Reynolds-number flows
because of the limited capacity of even the most so-
phisticated supercomputers. See TURBULENT FLOW.

Visualization. The final step is to visualize the re-
sults of the simulation. Powertul graphics work-
stations and visualization software permit gener-
ation of velocity vectors, pressure and velocity
contours, streamline generation, calculation of sec-
ondary quantities (such as vorticity), and animation
of unsteady calculations. Despite the sophisticated
hardware, visualization of three-dimensional and
unsteady flows is still particularly difficult. More-
over, many advanced visualization techniques tend
to be qualitative, and the most valuable visualiza-
tion often consists of simple x-y plots comparing
the numerical solution to theory or experimental
data. See COMPUTER GRAPHICS.

Applications. Computational fluid dynamics has
wide applicability in such areas as aerodynamics,
hydraulics, and geophysical flows, with length and
time scales of the physical processes ranging from
millimeters (fractions of an inch) and seconds to
kilometers (miles) and years.

Vehicle aerodynamics and hydrodyamics, which
have provided much of the impetus in the
development of computational fluid dynamics, are
primarily concerned with the flow around aircraft,
automobiles, and ships where the goal is the
determination of the lift and drag forces and the
moments resulting from these forces. Furthermore,
computational fluid dynamics is being applied to
explicate basic physics and to examine complete
vehicle configurations. See AERODYNAMIC FORCE;
AFRODYNAMICS; HYDRODYNAMICS.

Hydraulics and environmental fluid dynamics
also find many applications of computational fluid
dynamics. The prediction of pollutant dispersion in
rivers, lakes, and estuaries and riverine morphol-
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ogy, including river-bed formation and sediment
deposition, have been studied by using computa-
tional fluid dynamics. Detailed analysis of hydraulic
structures by using computational fluid dynamics
can provide data which are useful in new designs
and in the modernization of aging facilities. See HY-
DRAULICS; RIVER; WATER POLLUTION.

The study of atmospheric and oceanic dynamics
finds prolific use of computational fluid dynamics.
Although long-term prediction of weather is not
possible, because of its random nature and
the multiplicity of length and time scales, the
study of smaller problems (such as thunderstorms
and ocean circulation) and low-resolution global-
scale phenomena (for example, global climate
models) is possible. See CLIMATE MODELING;
DYNAMIC METEOROLOGY; FLUID FLOW; FLUID-
FLOW PRINCIPLES; NUMERICAL ANALYSIS; OCEAN
CIRCULATION; SIMULATION; WEATHER FORECASTING
AND PREDICTION. Eric Paterson; Fred Stern
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Computer

A device that receives, processes, and presents
information. The two basic types of computers are
analog and digital. Although generally not regarded
as such, the most prevalent computer is the simple
mechanical analog computer, in which gears,
levers, ratchets, and pawls perform mathematical
operations—for example, the speedometer and the
watt-hour meter (used to measure accumulated
electrical usage). The general public has become
much more aware of the digital computer with the
rapid proliferation of the hand-held calculator and
a large variety of intelligent devices, ranging from
typewriters to washing machines.

Analog computer. An analog computer uses inputs
that are proportional to the instantaneous value
of variable quantities, combines these inputs in a
predetermined way, and produces outputs that are
a continuously varying function of the inputs and
the processing. These outputs are then displayed
or connected to another device to cause action, as
in the case of a speed governor or other control
device.

The electronic analog computer is often used for
the solution of complex dynamic problems. Electri-
cal circuits, usually transistorized, perform the pro-
cessing. Electronic amplifiers allow signals to be
impressed upon cascaded circuits without signifi-
cant electrical loss of attenuation through loading of
prior stages, a feature absent in purely mechanical
computers. Friction in a mechanical analog com-

puter builds up and limits the complexity of the
device.

Small electronic analog computers are frequently
used as components in control systems. Inputs
come from measuring devices which output an
electrical signal (transducers). These electrical
signals are presented to the analog computer, which
processes them and provides a series of electronic
outputs that are then displayed on a meter for
observation by a human operator or connected to
an electrical action device to ring a bell, flash a light,
or adjust a remotely controlled valve to change the
flow in a pipeline system. If the analog computer is
built solely for one purpose, it is termed a special-
purpose electronic analog computer. See CONTROL
SYSTEMS.

General-purpose electronic analog computers are
used by scientists and engineers for analyzing
dynamic problems. A general-purpose analog
computer receives its degree of flexibility through
the use of removable control panels, each of which
carries a series of mating plugs. Outputs from one
component are routed to the input of another
component by connecting an electrical conductor
from one mating plug on the removable board
(output) to another plug on the removable board
(input). This process is called patching, and the
removable panel is frequently called a patch board.

Thus, in any analog computer the key concepts
involve special versus general-purpose computer
designs, and the technology utilized to construct
the computer itself, mechanical or electronic. In any
case, an analog computer receives inputs that are
instantaneous representations of variable quantities
and produces output results dynamically to a
graphical display device, a visual display device,
or in the case of a control system, a device which
causes mechanical motion. See ANALOG COMPUTER.

Digital computer. In contrast, a digital computer
uses symbolic representations of its variables. The
arithmetic unit is constructed to follow the rules
of one (or more) number systems. Further, the
digital computer uses individual discrete states to
represent the digits of the number system chosen.

Electronic versus mechanical computers. The most
prevalent special-purpose mechanical digital com-
puters have been the supermarket cash register,
the office adding machine, and the desk calculator.
Each of these is being widely replaced by elec-
tronic devices allowing much greater logical deci-
sion making and greatly increased speed. For exam-
ple, most products now carry a bar code, the Uni-
versal Product Code (UPC); in suitably equipped su-
permarkets, the code is scanned by a light-sensitive
device, bringing information about each product
into the point-of-sale (POS) terminal that has re-
placed the mechanical cash register. The POS ter-
minal then computes total charges and provides a
receipt for the customer. It may also communicate
with a centralized computer system that controls
inventory, accounts payable, salaries and commis-
sions, and so on. While a mechanical cash register



