5,100

5.100 A water siphon having a constant inside diameter of 3 in. is arranged as shown in Fig. P5.100. If the friction loss between A and B is $0.8V^2/2$, where V is the velocity of flow in the siphon, determine the flowrate involved.

FIGURE P5. 100

$$Q = AV = \frac{\pi - D^2}{4}V$$

(1)

To obtain V we apply the energy equation (Eq. 5.82) between points A and B in the sketch above. Thus,

$$\frac{1}{\frac{1}{p}} + \frac{1}{\frac{1}{2}} + \frac{1}{2} + \frac{1}{2} = \frac{1}{p} + \frac{1}{2} + \frac{$$

or

$$\frac{V^{2}}{2} + g z_{g} = g z_{A} - 0.8 \frac{V^{2}}{2}$$

Thus

$$V = \sqrt{\frac{g(z_A - z_B)}{o.9}} = \sqrt{\frac{(32.2 \frac{ft}{s^2})(8 ft)}{o.9}} = 16.9 \frac{ft}{s}$$

and with Eq. 1

$$Q = \frac{7Y(3in.)^{2}(16.9 \frac{ft}{s})}{4(144 \frac{in.^{2}}{ft^{2}})} = 0.830 \frac{ft^{3}}{s}$$