9.38

9.38 A sphere of diameter D and density ρ_s falls at a steady rate through a liquid of density ρ and viscosity μ . If the Reynolds number, Re = $\rho DU/\mu$, is less than 1, show that the viscosity can be determined from $\mu = gD^2(\rho_s + \rho)/18 U$.

For steady flow ZFz = 0

or
$$\mathcal{D} + F_B = W$$
, where $F_B = bvoyant$ force $= \varrho g + \varrho g \left(\frac{4}{3}\right)\pi\left(\frac{D}{2}\right)^3$

$$W = weight = \varrho_s g + \varrho_s g \left(\frac{4}{3}\right)\pi\left(\frac{D}{2}\right)^3$$
and $\mathcal{D} = drag = C_D \frac{1}{2} \varrho_s \frac{\pi}{4} D^2$, or since $Re < I$

$$\mathcal{D} = 3\pi DU\mu$$

Thus, $3\pi DU\mu + \rho g\left(\frac{4}{3}\right)\pi\left(\frac{D}{2}\right)^3 = \rho_s g\left(\frac{4}{3}\right)\pi\left(\frac{D}{2}\right)^3$ which can be rearranged to give $\mu = \frac{g D^2(\rho_s - \rho)}{18 U}$