A viscous fluid flows past a flat plate such that the boundary layer thickness at a distance 1.3 m from the leading edge is 12 mm. Determine the boundary layer thickness at distances of 0.20, 2.0, and 20 m from the leading edge. Assume laminar flow.

For laminar flow $\delta = CVX$, where C is a constant.

Thus,

$$C = \frac{\delta}{\sqrt{\chi}} = \frac{12 \times 10^{-3} m}{\sqrt{1.3 m}} = 0.0105$$
 or $\delta = 0.0105 \sqrt{\chi}$ where $\chi \sim m, \delta \sim m$

X, m	δ, m	δ, mm
0.2	0.00470	4.70
2.0	0.0/48	14.8
20.0	0.0470	47.0