between two large parallel plates as shown in Fig. P6.8. The bottom plate is fixed and the upper plate moves with a constant velocity, *U*. For these conditions the velocity distribution between the plates is linear, and can be expressed as

$$u = U \frac{y}{b}$$

Determine: (a) the volumetric dilatation rate, (b) the rotation vector, (c) the vorticity, and (d) the rate of angular deformation.

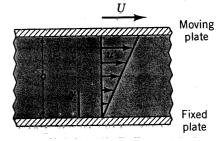


FIGURE P6.8

- (a) Volumetric dilatation rate = $\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$
- (b) For velocity distribution given, $\vec{\omega} = \omega_{\neq} \hat{k}$

and

$$\omega_2 = \frac{1}{2} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) = -\frac{U}{26}$$

Thus,
$$\overrightarrow{\omega} = -\frac{U}{2b} \stackrel{\uparrow}{k}$$

(c)
$$\vec{g} = 2\vec{\omega} = -\frac{U}{b}\vec{k}$$

$$(d) \quad \dot{\delta} = \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}$$

Thus,
$$\gamma = \frac{U}{b}$$

(Eg. 6.18)