4.21 The fluid velocity along the x axis shown in Fig. P4.21 changes from 6 m/s at point A to 18 m/s at point B. It is also known that the velocity is a linear function of distance along the streamline. Determine the acceleration at points A, B, and C. Assume steady flow.

$$\vec{a} = \frac{\delta \vec{V}}{\delta t} + \vec{V} \cdot \nabla \vec{V} \qquad \text{With } u = u(x) \text{, } v = 0 \text{, and } w = 0$$
this becomes
$$\vec{a} = \left(\frac{\delta u}{\delta t} + u \frac{\delta u}{\delta x}\right) \hat{\iota} = u \frac{\delta u}{\delta x} \hat{\iota} \qquad (1)$$
Since u is a linear function of x , $u = c_1 x + c_2$ where the constants c_1 , c_2 are given as: $u_A = 6 = c_2$
and $u_B = 18 = 0.1c_1 + c_2$
Thus, $u = (120x + 6) \frac{m}{s}$ with $x \sim m$

$$\vec{a} = u \frac{\delta u}{\delta x} \hat{\iota} = (120x + 6) \frac{m}{s} \left(120 \frac{m}{m^2 s}\right) \hat{\iota}$$
or
$$\vec{a} = u \frac{\delta u}{\delta x} \hat{\iota} = (120x + 6) \frac{m}{s^2} \left(120 \frac{m}{m^2 s}\right) \hat{\iota}$$
or
$$\vec{a} = u \frac{\delta u}{\delta x} \hat{\iota} = (120x + 6) \frac{m}{s^2} \left(120 \frac{m}{m^2 s}\right) \hat{\iota}$$
or
$$\vec{a} = u \frac{\delta u}{\delta x} \hat{\iota} = (120x + 6) \frac{m}{s^2} \left(120 \frac{m}{m^2 s}\right) \hat{\iota}$$
or
$$\vec{a} = u \frac{\delta u}{\delta x} \hat{\iota} = (120x + 6) \frac{m}{s^2} \left(120 \frac{m}{m^2 s}\right) \hat{\iota}$$
or
$$\vec{a} = u \frac{\delta u}{\delta x} \hat{\iota} = (120x + 6) \frac{m}{s^2} \left(120 \frac{m}{m^2 s}\right) \hat{\iota}$$
or
$$\vec{a} = u \frac{\delta u}{\delta x} \hat{\iota} = (120x + 6) \frac{m}{s^2} \left(120 \frac{m}{m^2 s}\right) \hat{\iota}$$
or
$$\vec{a} = u \frac{\delta u}{\delta x} \hat{\iota} = (120x + 6) \frac{m}{s^2} \left(120 \frac{m}{m^2 s}\right) \hat{\iota}$$

$$\vec{a} = u \frac{\delta u}{\delta x} \hat{\iota} = (120x + 6) \frac{m}{s^2} \left(120 \frac{m}{m^2 s}\right) \hat{\iota}$$

$$\vec{a} = u \frac{\delta u}{\delta x} \hat{\iota} = (120x + 6) \frac{m}{s^2} \left(120 \frac{m}{m^2 s}\right) \hat{\iota}$$

$$\vec{a} = u \frac{\delta u}{\delta x} \hat{\iota} = (120x + 6) \frac{m}{s^2} \left(120 \frac{m}{m^2 s}\right) \hat{\iota}$$