3.11 It can be shown that if viscous and gravitational effects are neglected, the fluid velocity along the surface of a circular cylinder of radius a is $V=2V_0 \sin \theta$, where V_0 is the upstream velocity and $s=a\theta$ is the distance measured along the streamline that coincides with the cylinder (see Fig. P3.11). For a fluid of density ρ , determine the pressure gradient in the radial direction, $\partial p/\partial r$, on the surface of the cylinder. Assume the axis of the cylinder is vertical. Is $\partial p/\partial r$ positive or negative? Explain physically. For what θ is $\partial p/\partial r$ the maximum? Explain why.

FIGURE P3.11

$$-8\frac{dz}{dn} - \frac{\partial \rho}{\partial n} = \frac{\rho V^2}{R} \quad \text{with } \frac{\partial}{\partial n} = \frac{\partial}{\partial r} \frac{\partial r}{\partial n} = -\frac{\partial}{\partial r} \quad \text{and}$$
so that
$$\frac{dz}{dn} = 0$$

$$\frac{\partial \rho}{\partial r} = \frac{\rho V^2}{R} = \frac{\rho V^2}{a} \quad \text{where} \quad V = 2V_0 \sin\theta \quad \text{and} \quad R = a$$
Thus,
$$\frac{\partial \rho}{\partial r} = \frac{4\rho V_0^2 \sin^2\theta}{a} = \frac{4\rho V_0^2 \cos^2\theta}{a} = \frac{4$$

Note that for any location (i.e. θ) it follows that $\frac{\partial \rho}{\partial r} > 0$, except at $\theta = 0$ or $\theta = 180 \deg$ where $\frac{\partial \rho}{\partial r} = 0$

Maximum $\frac{\partial \theta}{\partial r}$ occurs at $\theta = 90 \deg$ (i.e. maximum of $\sin^2\theta$) since that is the location of maximum normal acceleration.