1.84 As shown in Video V1.5, surface tension forces can be strong enough to allow a double-edge steel razor blade to "float" on water, but a single-edge blade will sink. Assume that the surface tension forces act at an angle θ relative to the water surface as shown in Fig. P1.84. (a) The mass of the double-edge blade is 0.64×10^{-3} kg, and the total length of its sides is 206 mm. Determine the value of θ required to maintain equilibrium between the blade weight and the resultant surface tension force. (b) The mass of the single-edge blade is 2.61×10^{-3} kg, and the total length of its sides is 154 mm. Explain why this blade sinks. Support your answer with the necessary calculations.

FIGURE P1.84

(a)
$$\Sigma F_{\text{vertical}} = 0$$

$$\mathcal{W} = T \sin \theta$$

where W = mblade g and T = Tx length of sides.

$$(0.64 \times 10^{-3} \text{ kg}) (9.81 \text{ m/s}^2) = (7.34 \times 10^{-2} \frac{N}{m}) (0.206 \text{ m}) \sin \theta$$

$$\sin \theta = 0.415$$

$$\underline{0 = 24.5^{\circ}}$$

(b) For single-edge blade
$$2W = m_{blade} \times g = (2.61 \times 10^{-3} \text{ kg}) (9.81 \text{ m/s}^2) = 0.0256 \text{ N}$$

T sin
$$\theta = (\mathcal{T} \times \text{length of blade}) \sin \theta$$

= $(7.34 \times 10^{-2} \text{ N/m})(0.154 \text{ m}) \sin \theta$
= $0.0113 \sin \theta$

In order for blade to "float" $W < T \sin \theta$. Since maximum value for sind is 1, it follows that $W > T \sin \theta$ and single-edge blade will sink.