Problem 5.46

Figure P5.46 shows a lateral pipe fitting. This particular fitting has a mainline diameter of 4.0 in . The diameter of the lateral is 3.0 in., and the lateral angle is $45^{\circ} ; 60^{\circ} \mathrm{F}$ water is flowing in the lateral. Measurements show that the pressure at point 1 is 34.0 psig , the pressure at point 2 is 35.0 psig , the pressure at point 3 is 33.5 psig , and the flow rate at point 2 is $1.0 \mathrm{ft}^{3} / \mathrm{s}$. Determine the horizontal and vertical force components ($F x$ and $F y$) required to hold the lateral fitting stationary. Neglect gravity. $Q_{1}=1.63 \mathrm{ft}^{3} / \mathrm{s}$.

Solution

First apply the continuity equation

$$
Q_{1}=Q_{2}+Q_{3} \Rightarrow Q_{3}=Q_{1}-Q_{2}=1.63 \frac{f t^{3}}{s}-1.0 \frac{f t^{3}}{s}=0.63 \frac{f^{3}}{s}
$$

For the " x " direction

$$
\sum F_{x}=F_{x}+p_{1} A_{1}-p_{2} A_{2}-p_{3} A_{3} \cos 45^{\circ}=\rho Q_{2} V_{2}+\rho Q_{3} V_{3} \cos 45^{\circ}-\rho Q_{1} V_{1}
$$

so

$$
F_{x}=\rho Q_{2} V_{2}+\rho Q_{3} V_{3} \cos 45^{\circ}-\rho Q_{1} V_{1}+p_{2} A_{2}+p_{3} A_{3} \cos 45^{\circ}-p_{1} A_{1}
$$

but

$$
A=\frac{\pi}{4} D^{2} \quad \text { and } \quad V=\frac{Q}{A} \quad \text { so } \quad V=\frac{4 Q}{\pi D^{2}}
$$

substituting $\quad F_{x}=\frac{4 \rho Q_{2}^{2}}{\pi D_{2}^{2}}+\frac{4 \rho Q_{3}^{2}}{\pi D_{3}^{2}} \cos 45^{\circ}-\frac{4 \rho Q_{1}^{2}}{\pi D_{2}^{2}}+p_{2} \frac{\pi}{4} D_{2}^{2}+p_{3} \frac{\pi}{4} D_{3}^{2} \cos 45^{\circ}-p_{1} \frac{\pi}{4} D_{1}^{2}$
gathering terms and substituting numerical values and conversion factors gives

$$
\begin{gathered}
F_{x}=\frac{4 \rho}{\pi}\left(\frac{Q_{2}^{2}}{D_{2}^{2}}+\frac{Q_{3}^{2}}{D_{3}^{2}} \cos 45^{\circ}-\frac{Q_{1}^{2}}{D_{2}^{2}}\right)+\frac{\pi}{4}\left(p_{2} D_{2}^{2}+p_{3} D_{3}^{2} \cos 45^{\circ}-p_{1} D_{1}^{2}\right) \\
F_{x}=\frac{4 \times 1.94 \frac{\text { slugs }}{f t^{3}}}{\pi}\left(\frac{1.0^{2} \frac{f t^{6}}{s^{2}}}{(0.333 f t)^{2}}+\frac{0.63^{2} \frac{f t^{6}}{s^{2}}}{(0.25 f t)^{2}} \cos 45^{\circ}-\frac{1.63^{2} \frac{f t^{6}}{\mathrm{~s}^{2}}}{(0.333 f t)^{2}}\right)+\frac{\pi}{4}\left(35.0 \frac{\mathrm{lb}}{\mathrm{in}^{2}} \times 16 \mathrm{in}^{2}+33.5 \frac{\mathrm{lb}}{\mathrm{in}^{2}} \times 9 \mathrm{in}^{2} \cos 45^{\circ}-34.0 \frac{\mathrm{lb}}{\mathrm{in}^{2}} \times 16 \mathrm{in}^{2}\right)
\end{gathered}
$$

$$
\xlongequal{F_{x}=+154.2 \mathrm{lb}} \text { (acts to the right) }
$$

For the " y " direction

$$
\sum F_{y}=F_{y}-p_{3} A_{3}=\rho Q_{3} V_{3} \sin 45^{\circ}-0 \Rightarrow F_{y}=p_{3} A_{3}+\rho Q_{3} V_{3} \sin 45^{\circ}
$$

The weight of the fitting and the water in it have been neglected. Substituting as before

$$
\begin{gathered}
F_{y}=p_{3} \frac{\pi}{4} D_{3}^{2}+\frac{4 \rho}{\pi} \frac{Q_{3}^{2}}{D_{3}^{2}} \sin 45^{\circ} \\
F_{y}=\frac{4 \times 1.94 \frac{\text { slugs }}{f t^{3}}}{\pi}\left(\frac{0.63^{2} \frac{f t^{6}}{s^{2}}}{(0.25 f t)^{2}} \sin 45^{\circ}\right)+\frac{\pi}{4}\left(33.5 \frac{\mathrm{lb}}{\mathrm{in}^{2}} \times 9 \mathrm{in}^{2} \sin 45^{\circ}\right) \\
F_{y}=+28.0 \mathrm{lb} \text { (acts up) }
\end{gathered}
$$

