2.76 Find the weight W needed to hold the wall shown in Fig. P2.76 upright. The wall is 10 m wide.

Figure P2.76

SOLUTION:

The hydrostatic force F on the wall is found from

$$
\begin{aligned}
F & =\rho g h_{c} A \\
& =\left(1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right)\left(9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)(2 \mathrm{~m})\left(4 \times 10 \mathrm{~m}^{2}\right) \\
& =78500\left(\frac{\mathrm{~kg} \cdot \mathrm{~m}}{\mathrm{~s}^{2}}\right)\left(\frac{\mathrm{kN}}{1000 \mathrm{~N}}\right) \\
& =785 \mathrm{kN}
\end{aligned}
$$

The force F is located one-third of the water depth
 from the bottom of the water.

$$
h=\frac{1}{3}(4 m)=1.33 m
$$

Summing moments about the pinned joint,

$$
F_{W}=\frac{h}{H} F=\frac{(1.33 m)}{(7 m)}(785 \mathrm{kN})=149 \mathrm{kN}
$$

Assuming no friction between the rope and the pulley,

$$
W=F_{W} \quad \rightarrow \quad W=149 \mathrm{kN}
$$

DISCUSSION

Note that the atmospheric pressure acts on both sides of the wall.
Therefore, the forces due to atmospheric pressure are equal and opposite, and cancel.

