Example: Effect of Surface Roughness

A well-hit golf ball (diameter $D=1.69 \mathrm{in}$.) can travel at $\mathrm{U}=200 \mathrm{ft} / \mathrm{s}$ as it leaves the tee. Determine the drag on (a) a standard golf ball and (b) a smooth golf ball for the conditions given.

Solution:
For either ball, the drag can be obtained from

$$
\begin{equation*}
\mathfrak{D}=\frac{1}{2} \rho U^{2} \frac{\pi}{4} D^{2} C_{D} \tag{1}
\end{equation*}
$$

where the drag coefficient C_{D} is given in the figure as a function of the Reynolds number and surface roughness. For the golf ball in standard air

$$
R e=\frac{U D}{v}=\frac{(200 \mathrm{ft} / \mathrm{s})(1.69 / 12 \mathrm{ft})}{1.57 \times 10^{-4} \mathrm{ft}^{2} / \mathrm{s}}=1.79 \times 10^{5}
$$

The corresponding drag coefficients are $C_{D}=0.25$ for the standard golf ball and $C_{D}=0.51$ for the smooth golf ball. Hence, from Eq. 1 for the standard golf ball

$$
\mathfrak{D}=\frac{1}{2}\left(0.00238 \text { slugs } / \mathrm{ft}^{3}\right)(200 \mathrm{ft} / \mathrm{s})^{2} \frac{\pi}{4}\left(\frac{1.69}{12} \mathrm{ft}\right)^{2}(0.25)=0.185 \mathrm{lb}
$$

and for the smooth golf ball

$$
\mathfrak{D}=\frac{1}{2}\left(0.00238 \text { slugs } / \mathrm{ft}^{3}\right)(200 \mathrm{ft} / \mathrm{s})^{2} \frac{\pi}{4}\left(\frac{1.69}{12} \mathrm{ft}\right)^{2}(0.51)=0.378 \mathrm{lb}
$$

Note that dimples on golf balls can create a turbulent boundary layer and reduce the aerodynamic drag, allowing longer drives than with smooth balls.

