3.12 The pipe flow in Fig. P.3.12 fills a cylindrical tank as shown. At time $t=0$, the water depth in the tank is 30 cm . Estimate the time required to fill the remainder of the tank.

P3.12

Solution:

$$
\begin{aligned}
0 & =\frac{d}{d t} \int_{C V} \rho d V-\rho Q_{1}+\rho Q_{2} \\
& =\frac{d}{d t} \int_{C V} \rho d V-\rho V_{1} \frac{\pi d^{2}}{4}+\rho V_{2} \frac{\pi d^{2}}{4}
\end{aligned}
$$

where

$$
\begin{gathered}
\frac{d}{d t} \int_{C V} \rho d V=\rho \frac{\pi D^{2}}{4} \frac{d h}{d t} \\
V(t)=h(t) \frac{\pi D^{2}}{4}
\end{gathered}
$$

Therefore,

$$
\begin{array}{r}
0=\frac{\rho \pi D^{2}}{4} \frac{d h}{d t}+\rho \frac{\pi d^{2}}{4}\left(V_{2}-V_{1}\right) \\
\therefore \frac{d h}{d t}=\left(\frac{d}{D}\right)^{2}\left(V_{2}-V_{1}\right)=0.0153 \\
d t=\frac{d h}{0.0153}=\frac{0.7}{0.0153}=46 \mathrm{~s}
\end{array}
$$

Alternate solution approach: Assume steady flow, one inlet and two exits with uniform flow.

$$
\begin{array}{r}
0=-Q_{1}+Q_{2}+Q_{3} \\
Q_{3}=Q_{1}-Q_{2}=\frac{V_{3}}{d t} \\
d t=\frac{V_{3}}{Q_{1}-Q_{2}}=\frac{d h \frac{\pi D^{2}}{4}}{\frac{\pi D^{2}}{4}\left(V_{1}-V_{2}\right)}=46 s
\end{array}
$$

