$$
(12)(\pi)\left(0.08^{2}\right) / 4+(0.10)(0.3016)=\mathrm{V}_{2}(\pi)\left(0.08^{2}\right) / 4 \quad \mathbf{V}_{2}=\mathbf{1 8} \mathbf{~ m} / \mathrm{s} \quad \text { Ans. (b) }
$$

(c) Setting the outflow V 2 to $9 \mathrm{~m} / \mathrm{s}$, the wall suction velocity is,

$$
(12)(\pi)\left(0.08^{2}\right) / 4=\left(\mathrm{v}_{\mathrm{w}}\right)(0.3016)+(9)(\pi)\left(0.08^{2}\right) / 4 \quad \mathbf{v}_{\mathrm{w}}=\mathbf{0 . 0 5} \mathbf{~ m} / \mathrm{s}=5 \mathrm{~cm} / \mathrm{s} \text { out }
$$

P3.11 The inlet section of a vacuum cleaner is a rectangle, 1 inch by 5 inches. The blower is able to provide suction at 25 cubic feet per minute. (a) What is the average velocity at the inlet, in m / s ? (b) If conditions are sea level standard, what is the mass flow of air, in kg / s ?

Solution: (a) Convert $25 \mathrm{ft}^{3} / \mathrm{min}$ to $25 / 60=0.417 \mathrm{ft}^{3} / \mathrm{s}$. Then the inlet velocity is

$$
V_{\text {inlet }}=\frac{Q}{A_{\text {inlet }}}=\frac{0.417 \mathrm{ft}^{3} / \mathrm{s}}{(1 / 12 \mathrm{ft})(5 / 12 \mathrm{ft})}=12.0 \frac{\mathrm{ft}}{\mathrm{~s}} \times 0.3048 \frac{\mathrm{~m}}{\mathrm{ft}}=3.66 \frac{\mathrm{~m}}{\mathrm{~s}} \quad \text { Ans. }(\mathrm{a})
$$

(b) At sea level, $\rho_{\text {air }}=1.2255 \mathrm{~kg} / \mathrm{m}^{3}$. Convert $25 \mathrm{ft}^{3} / \mathrm{min}$ to $0.0118 \mathrm{~m}^{3} / \mathrm{s}$. Then

$$
\begin{equation*}
\dot{m}_{\text {air }}=\rho_{\text {air }} Q=\left(1.2255 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right)\left(0.0118 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}\right)=0.0145 \frac{\mathrm{~kg}}{\mathrm{~s}} \tag{b}
\end{equation*}
$$

P3.12 The pipe flow in Fig. P3.12 fills a cylindrical tank as shown. At time $t=0$, the water depth in the tank is 30 cm . Estimate the time required to fill the remainder of the tank.

Fig. P3.12

Solution: For a control volume enclosing the tank and the portion of the pipe below the tank,

$$
\begin{gathered}
\frac{d}{d t}\left[\int \rho d v\right]+\dot{m}_{\text {out }}-\dot{m}_{\text {in }}=0 \\
\rho \pi R^{2} \frac{d h}{d t}+(\rho A V)_{\text {out }}-(\rho A V)_{\text {in }}=0
\end{gathered}
$$

$$
\begin{gathered}
\frac{d h}{d t}=\frac{4}{998(\pi)\left(0.75^{2}\right)}\left[998\left(\frac{\pi}{4}\right)\left(0.12^{2}\right)(2.5-1.9)\right]=0.0153 \mathrm{~m} / \mathrm{s}, \\
\Delta t=0.7 / 0.0153=46 \mathrm{~s} \text { Ans. }
\end{gathered}
$$

