3.137 A cylindrical block of wood 1 m in diameter and 1 m long has a specific weight of $5000 \mathrm{~N} / \mathrm{m}^{3}$. Will it float in water with the ends horizontal?


$$
\begin{aligned}
& x_{c}=5000 \frac{\mathrm{~N}}{\mathrm{~m}^{3}} \\
& \delta_{w}=9810 \frac{\mathrm{~N}}{\mathrm{~m}^{3}}
\end{aligned}
$$

## Solution:

$$
\sum F_{v}=-W+F_{B}=0
$$

where

$$
\begin{aligned}
& W=m g=\rho V_{c} g=\gamma_{c} V_{c}=\gamma_{c} \times 1 \times A \\
& F_{B}=\gamma_{w} V=\gamma_{w} d A
\end{aligned}
$$

Therefore

$$
\begin{aligned}
d & =\gamma_{c} / \gamma_{w}=5000 / 9810=.5097 \mathrm{~m} \\
V & =\pi r^{2} d=.4003 \mathrm{~m}^{3} \\
c & =\frac{d}{2}=\frac{.5092}{2} \\
C G & =.5-\frac{.5092}{2}=.2452
\end{aligned}
$$

Since

$$
G M=\frac{I_{O O}}{V}-C G=\frac{.0491}{.4003}-.2452=-.1225<0: \text { unstable }
$$

where

$$
I_{O O}=\frac{\pi r^{4}}{4}=.0491 \mathrm{~m}^{4}
$$

