

In the figure, surface $A B$ is a circular arc with a ridius of 2 m and a depth of 1 m into the paper. The distance $E B$ is 4 m . The fluid above surface $A B$ is water, and atmospheric pressure prevails on the free surface of the water and on the bottom side of surface $A B$. Find the magnitude and line of action of the hydrostatic force acting on surface $A B$.

Solution:

$$
F_{R}=F_{R_{x}} \hat{i}+F_{R_{y}} \hat{j}
$$

$$
\begin{aligned}
F_{R_{y}} & =-\gamma V_{C D E B+A C B} \\
& =-\gamma\left[4 \times 2 \times 1+\frac{1}{4} \pi 2^{2} \times 1\right]=-109.3 \mathrm{kN}
\end{aligned}
$$

$$
x_{c p} F_{R_{y}}=1 \times \gamma V_{C D E B}+\left(r-\frac{4 r}{3 \pi} \gamma V_{A C B}\right)
$$

$$
x_{c p}=1.04 \mathrm{~m}
$$

$$
F_{R_{x}}=\bar{p} A=\gamma \times 5 \times 2 \times 1=98.1 \mathrm{kN}
$$

$$
y_{c p}=\bar{y}+\frac{\bar{I}}{\bar{y} A}=5.067 \mathrm{~m}
$$

where

$$
\bar{I}=\frac{b h^{3}}{12}=\frac{1 \times 2^{3}}{12}
$$

